These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


216 related items for PubMed ID: 3625570

  • 21. Diurnal and circadian rhythm in compound eye of cricket (Gryllus bimaculatus): changes in structure and photon capture efficiency.
    Sakura M, Takasuga K, Watanabe M, Eguchi E.
    Zoolog Sci; 2003 Jul; 20(7):833-40. PubMed ID: 12867711
    [Abstract] [Full Text] [Related]

  • 22. Structure and putative function of dark- and light-adapted as well as UV-exposed eyes of the food store pest Psyllipsocus ramburi Sélys-longchamps (Insecta: Psocoptera: Psyllipsocidae).
    Meyer-Rochow VB, Mishra M.
    J Insect Physiol; 2007 Feb; 53(2):157-69. PubMed ID: 17196612
    [Abstract] [Full Text] [Related]

  • 23. Actin-based vesicular transport in the first 20 min after dusk is crucial for daily rhabdom synthesis in the compound eye of the grapsid crab Hemigrapsus sanguineus.
    Matsushita A, Arikawa K.
    J Exp Biol; 1997 Sep; 200(Pt 18):2387-92. PubMed ID: 9343852
    [Abstract] [Full Text] [Related]

  • 24. Evidence for a pathway of distal screening pigment granules across the basement membrane of the crayfish photoreceptor.
    Schraermeyer U.
    Z Naturforsch C J Biosci; 1992 Sep; 47(5-6):453-64. PubMed ID: 1418243
    [Abstract] [Full Text] [Related]

  • 25. Structural changes in light- and dark-adapted compound eyes of the Australian earwig Labidura riparia truncata (Dermaptera).
    McLean M, Horridge GA.
    Tissue Cell; 1977 Sep; 9(4):653-66. PubMed ID: 610005
    [Abstract] [Full Text] [Related]

  • 26. Modification of spectral sensitivities by screening pigments in the compound eyes of twilight-active fireflies (Coleoptera: Lampyridae).
    Lall AB, Strother GK, Cronin TW, Seliger HH.
    J Comp Physiol A; 1988 Jan; 162(1):23-33. PubMed ID: 3351784
    [Abstract] [Full Text] [Related]

  • 27. Comparison between temperature-induced changes and effects caused by dark/light adaptation in the eyes of two species of Antarctic crustaceans.
    Meyer-Rochow VB, Tiang KM.
    Cell Tissue Res; 1982 Jan; 221(3):625-32. PubMed ID: 7055839
    [Abstract] [Full Text] [Related]

  • 28. Range of modulation of light sensitivity by accessory pigments in the crayfish compound eye.
    Rodríguez-Sosa L, Aréchiga H.
    Vision Res; 1982 Jan; 22(12):1515-24. PubMed ID: 7183001
    [Abstract] [Full Text] [Related]

  • 29. Dark regeneration of rhodopsin in crayfish photoreceptors.
    Cronin TW, Goldsmith TH.
    J Gen Physiol; 1984 Jul; 84(1):63-81. PubMed ID: 6747600
    [Abstract] [Full Text] [Related]

  • 30. Biochemical aspects of the visual process. XXXVII. Evidence for lateral aggregation of rhodopsin molecules in phospholipase C-treated bovine photoreceptor membranes.
    Olive J, Benedetti EL, van Breugel PJ, Daemen FJ, Bonting SL.
    Biochim Biophys Acta; 1978 May 04; 509(1):129-35. PubMed ID: 647003
    [Abstract] [Full Text] [Related]

  • 31. Fine structural description of the lateral ocellus of Craterostigmus tasmanianus Pocock, 1902 (Chilopoda: Craterostigmomorpha) and phylogenetic considerations.
    Müller CH, Meyer-Rochow VB.
    J Morphol; 2006 Jul 04; 267(7):850-65. PubMed ID: 16628623
    [Abstract] [Full Text] [Related]

  • 32. Ultrastructure of the eye of a euphausiid crustacean.
    Denys CJ, Adamian M, Brown PK.
    Tissue Cell; 1983 Jul 04; 15(1):77-95. PubMed ID: 6857636
    [Abstract] [Full Text] [Related]

  • 33. Visual pigment spectra of the comma butterfly, Polygonia c-album, derived from in vivo epi-illumination microspectrophotometry.
    Vanhoutte KJ, Stavenga DG.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 May 04; 191(5):461-73. PubMed ID: 15754191
    [Abstract] [Full Text] [Related]

  • 34. A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas.
    Foster KW, Saranak J, Patel N, Zarilli G, Okabe M, Kline T, Nakanishi K.
    Nature; 2005 May 04; 311(5988):756-9. PubMed ID: 6493336
    [Abstract] [Full Text] [Related]

  • 35. A possible role of rhodopsin in maintaining bilayer structure in the photoreceptor membrane.
    De Grip WJ, Drenthe EH, Van Echteld CJ, De Kruijff B, Verkleij AJ.
    Biochim Biophys Acta; 1979 Dec 12; 558(3):330-7. PubMed ID: 508752
    [Abstract] [Full Text] [Related]

  • 36. Photoreceptor processes: some problems and perspectives.
    Goldsmith TH.
    J Exp Zool; 1975 Oct 12; 194(1):89-101. PubMed ID: 453
    [Abstract] [Full Text] [Related]

  • 37. Ultrastructural comparison of the compound eyes of the Asian corn borer Ostrinia furnacalis (Lepidoptera: Crambidae) under light/dark adaptation.
    Chen QX, Chen YW, Li WL.
    Arthropod Struct Dev; 2019 Nov 12; 53():100901. PubMed ID: 31760197
    [Abstract] [Full Text] [Related]

  • 38. Fine structure of the compound eyes of the midwater amphipod Phronima in relation to behavior and habitat.
    Ball EE.
    Tissue Cell; 1977 Nov 12; 9(3):521-36. PubMed ID: 929580
    [Abstract] [Full Text] [Related]

  • 39. Colour receptors in the eye of the digger wasp, Sphex cognatus Smith: evaluation by selective adaptation.
    Ribi WA.
    Cell Tissue Res; 1978 Dec 29; 195(3):471-83. PubMed ID: 728978
    [Abstract] [Full Text] [Related]

  • 40. Rhodopsin particles in the photoreceptor membrane of an insect.
    Boschek CB, Hamdorf K.
    Z Naturforsch C Biosci; 1976 Dec 29; 31(11-12):763. PubMed ID: 138303
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.