These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 36258365

  • 1. Experimental and theoretical investigation of waveguided plasmonic surface lattice resonances.
    Ugulen HS, Flatabø R, Sultan MA, Hastings JT, Greve MM.
    Opt Express; 2022 Oct 10; 30(21):37846-37862. PubMed ID: 36258365
    [Abstract] [Full Text] [Related]

  • 2. Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory.
    Yang L, Wang J, Yang LZ, Hu ZD, Wu X, Zheng G.
    Sci Rep; 2018 Feb 07; 8(1):2560. PubMed ID: 29416096
    [Abstract] [Full Text] [Related]

  • 3. Broadband Enhancement of Magneto-Optical Effects in Hybrid Waveguide-Plasmonic Surfaces for Sensing.
    Carvalho WOF, Spadoti DH, Oliveira ON, Mejía-Salazar JR.
    ACS Appl Mater Interfaces; 2024 Aug 14; 16(32):42942-42946. PubMed ID: 39087324
    [Abstract] [Full Text] [Related]

  • 4. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A, Tselikov G, Wu F, Kravets VG, Ozerov I, Bedu F, Grigorenko AN, Kabashin AV.
    Biosens Bioelectron; 2018 May 01; 104():102-112. PubMed ID: 29331424
    [Abstract] [Full Text] [Related]

  • 5. Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices.
    Forcherio GT, Blake P, DeJarnette D, Roper DK.
    Opt Express; 2014 Jul 28; 22(15):17791-803. PubMed ID: 25089400
    [Abstract] [Full Text] [Related]

  • 6. Engineering Fano resonances in plasmonic metasurfaces for colorimetric sensing and structural colors.
    Kohandani R, Saini SS.
    Nanotechnology; 2024 Oct 15; 36(1):. PubMed ID: 39374618
    [Abstract] [Full Text] [Related]

  • 7. Tuning Multiple Fano Resonances for On-Chip Sensors in a Plasmonic System.
    Yu S, Zhao T, Yu J, Pan D.
    Sensors (Basel); 2019 Mar 31; 19(7):. PubMed ID: 30935140
    [Abstract] [Full Text] [Related]

  • 8. High Spectral Sensitivity of Strongly Coupled Hybrid Tamm-Plasmonic Resonances for Biosensing Application.
    Anulytė J, Bužavaitė-Vertelienė E, Stankevičius E, Vilkevičius K, Balevičius Z.
    Sensors (Basel); 2022 Dec 03; 22(23):. PubMed ID: 36502156
    [Abstract] [Full Text] [Related]

  • 9. Fano Resonance-Based Blood Plasma Monitoring and Sensing using Plasmonic Nanomatryoshka.
    Pathania P, Shishodia MS.
    Plasmonics; 2021 Dec 03; 16(6):2117-2124. PubMed ID: 34131417
    [Abstract] [Full Text] [Related]

  • 10. Optical sensing based on multimode Fano resonances in metal-insulator-metal waveguide systems with X-shaped resonant cavities.
    Li J, Chen J, Liu X, Tian H, Wang J, Cui J, Rohimah S.
    Appl Opt; 2021 Jun 20; 60(18):5312-5319. PubMed ID: 34263768
    [Abstract] [Full Text] [Related]

  • 11. Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators.
    Tang Y, Zhang Z, Wang R, Hai Z, Xue C, Zhang W, Yan S.
    Sensors (Basel); 2017 Apr 06; 17(4):. PubMed ID: 28383510
    [Abstract] [Full Text] [Related]

  • 12. Ultra-Narrow SPP Generation from Ag Grating.
    Stocker G, Spettel J, Dao TD, Tortschanoff A, Jannesari R, Pühringer G, Saeidi P, Dubois F, Fleury C, Consani C, Grille T, Aschauer E, Jakoby B.
    Sensors (Basel); 2021 Oct 21; 21(21):. PubMed ID: 34770299
    [Abstract] [Full Text] [Related]

  • 13. Fano-like coupling between two oppositely enhanced processes by diffraction in a dielectric grating.
    Zhang J, Zhang X.
    Opt Express; 2015 Nov 16; 23(23):30429-37. PubMed ID: 26698522
    [Abstract] [Full Text] [Related]

  • 14. Self-reference plasmonic sensors based on double Fano resonances.
    Wang Y, Sun C, Li H, Gong Q, Chen J.
    Nanoscale; 2017 Aug 10; 9(31):11085-11092. PubMed ID: 28741643
    [Abstract] [Full Text] [Related]

  • 15. Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality.
    Ponomareva E, Volk K, Mulvaney P, Karg M.
    Langmuir; 2020 Nov 17; 36(45):13601-13612. PubMed ID: 33147412
    [Abstract] [Full Text] [Related]

  • 16. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing.
    Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch GA, Lagae L, Moshchalkov VV.
    Nano Lett; 2011 Feb 09; 11(2):391-7. PubMed ID: 21265553
    [Abstract] [Full Text] [Related]

  • 17. Universal scaling of the figure of merit of plasmonic sensors.
    Offermans P, Schaafsma MC, Rodriguez SR, Zhang Y, Crego-Calama M, Brongersma SH, Gómez Rivas J.
    ACS Nano; 2011 Jun 28; 5(6):5151-7. PubMed ID: 21574624
    [Abstract] [Full Text] [Related]

  • 18. Double Narrow Fano Resonances via Diffraction Coupling of Magnetic Plasmon Resonances in Embedded 3D Metamaterials for High-Quality Sensing.
    Hu H, Lu X, Huang J, Chen K, Su J, Yan Z, Tang C, Cai P.
    Nanomaterials (Basel); 2021 Dec 11; 11(12):. PubMed ID: 34947710
    [Abstract] [Full Text] [Related]

  • 19. Plasmonic sensors with an ultra-high figure of merit.
    Liu Z, Liu G, Liu X, Fu G.
    Nanotechnology; 2020 Mar 13; 31(11):115208. PubMed ID: 31751986
    [Abstract] [Full Text] [Related]

  • 20. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D, Guan J, Hu J, Bourgeois MR, Odom TW.
    Acc Chem Res; 2019 Nov 19; 52(11):2997-3007. PubMed ID: 31596570
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.