These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


228 related items for PubMed ID: 36266331

  • 1. Dynamical control of quantum heat engines using exceptional points.
    Zhang JW, Zhang JQ, Ding GY, Li JC, Bu JT, Wang B, Yan LL, Su SL, Chen L, Nori F, Özdemir ŞK, Zhou F, Jing H, Feng M.
    Nat Commun; 2022 Oct 20; 13(1):6225. PubMed ID: 36266331
    [Abstract] [Full Text] [Related]

  • 2. Enhancement of Quantum Heat Engine by Encircling a Liouvillian Exceptional Point.
    Bu JT, Zhang JQ, Ding GY, Li JC, Zhang JW, Wang B, Ding WQ, Yuan WF, Chen L, Özdemir ŞK, Zhou F, Jing H, Feng M.
    Phys Rev Lett; 2023 Mar 17; 130(11):110402. PubMed ID: 37001093
    [Abstract] [Full Text] [Related]

  • 3. Chiral quantum heating and cooling with an optically controlled ion.
    Bu JT, Zhang JQ, Ding GY, Li JC, Zhang JW, Wang B, Ding WQ, Yuan WF, Chen L, Zhong Q, Keçebaş A, Özdemir ŞK, Zhou F, Jing H, Feng M.
    Light Sci Appl; 2024 Jun 26; 13(1):143. PubMed ID: 38918396
    [Abstract] [Full Text] [Related]

  • 4. Quantum heat engines: Limit cycles and exceptional points.
    Insinga A, Andresen B, Salamon P, Kosloff R.
    Phys Rev E; 2018 Jun 26; 97(6-1):062153. PubMed ID: 30011553
    [Abstract] [Full Text] [Related]

  • 5. Decoherence-Induced Exceptional Points in a Dissipative Superconducting Qubit.
    Chen W, Abbasi M, Ha B, Erdamar S, Joglekar YN, Murch KW.
    Phys Rev Lett; 2022 Mar 18; 128(11):110402. PubMed ID: 35363025
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants.
    El Makouri A, Slaoui A, Ahl Laamara R.
    Phys Rev E; 2023 Oct 18; 108(4-1):044114. PubMed ID: 37978648
    [Abstract] [Full Text] [Related]

  • 10. Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential.
    Xiao Y, Li K, He J, Wang J.
    Entropy (Basel); 2023 Mar 10; 25(3):. PubMed ID: 36981372
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Comparative study of quantum Otto and Carnot engines powered by a spin working substance.
    Abd-Rabbou MY, Rahman AU, Yurischev MA, Haddadi S.
    Phys Rev E; 2023 Sep 10; 108(3-1):034106. PubMed ID: 37849157
    [Abstract] [Full Text] [Related]

  • 14. Parametrically driving a quantum oscillator into exceptionality.
    Downing CA, Vidiella-Barranco A.
    Sci Rep; 2023 Jul 07; 13(1):11004. PubMed ID: 37419917
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Quantum-parametric-oscillator heat engines in squeezed thermal baths: Foundational theoretical issues.
    Arısoy O, Hsiang JT, Hu BL.
    Phys Rev E; 2022 Jan 07; 105(1-1):014108. PubMed ID: 35193212
    [Abstract] [Full Text] [Related]

  • 18. Measurement-induced operation of two-ion quantum heat machines.
    Chand S, Biswas A.
    Phys Rev E; 2017 Mar 07; 95(3-1):032111. PubMed ID: 28415299
    [Abstract] [Full Text] [Related]

  • 19. Quantum mechanical bound for efficiency of quantum Otto heat engine.
    Park JM, Lee S, Chun HM, Noh JD.
    Phys Rev E; 2019 Jul 07; 100(1-1):012148. PubMed ID: 31499873
    [Abstract] [Full Text] [Related]

  • 20. Dynamics of a strongly coupled quantum heat engine-Computing bath observables from the hierarchy of pure states.
    Boettcher V, Hartmann R, Beyer K, Strunz WT.
    J Chem Phys; 2024 Mar 07; 160(9):. PubMed ID: 38436445
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.