These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. ATR/CHK1 inhibitors and cancer therapy. Qiu Z, Oleinick NL, Zhang J. Radiother Oncol; 2018 Mar; 126(3):450-464. PubMed ID: 29054375 [Abstract] [Full Text] [Related]
3. PARP Inhibition Increases the Reliance on ATR/CHK1 Checkpoint Signaling Leading to Synthetic Lethality-An Alternative Treatment Strategy for Epithelial Ovarian Cancer Cells Independent from HR Effectiveness. Gralewska P, Gajek A, Marczak A, Mikuła M, Ostrowski J, Śliwińska A, Rogalska A. Int J Mol Sci; 2020 Dec 19; 21(24):. PubMed ID: 33352723 [Abstract] [Full Text] [Related]
6. Multiple DNA damage-dependent and DNA damage-independent stress responses define the outcome of ATR/Chk1 targeting in medulloblastoma cells. Krüger K, Geist K, Stuhldreier F, Schumacher L, Blümel L, Remke M, Wesselborg S, Stork B, Klöcker N, Bormann S, Roos WP, Honnen S, Fritz G. Cancer Lett; 2018 Aug 28; 430():34-46. PubMed ID: 29753759 [Abstract] [Full Text] [Related]
8. Reconstitution of human claspin-mediated phosphorylation of Chk1 by the ATR (ataxia telangiectasia-mutated and rad3-related) checkpoint kinase. Lindsey-Boltz LA, Serçin O, Choi JH, Sancar A. J Biol Chem; 2009 Nov 27; 284(48):33107-14. PubMed ID: 19828454 [Abstract] [Full Text] [Related]
9. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Smith J, Tho LM, Xu N, Gillespie DA. Adv Cancer Res; 2010 Nov 27; 108():73-112. PubMed ID: 21034966 [Abstract] [Full Text] [Related]
10. Participation of the ATR/CHK1 pathway in replicative stress targeted therapy of high-grade ovarian cancer. Gralewska P, Gajek A, Marczak A, Rogalska A. J Hematol Oncol; 2020 Apr 21; 13(1):39. PubMed ID: 32316968 [Abstract] [Full Text] [Related]
11. Targeting DNA Damage Response in Prostate Cancer by Inhibiting Androgen Receptor-CDC6-ATR-Chk1 Signaling. Karanika S, Karantanos T, Li L, Wang J, Park S, Yang G, Zuo X, Song JH, Maity SN, Manyam GC, Broom B, Aparicio AM, Gallick GE, Troncoso P, Corn PG, Navone N, Zhang W, Li S, Thompson TC. Cell Rep; 2017 Feb 21; 18(8):1970-1981. PubMed ID: 28228262 [Abstract] [Full Text] [Related]
12. New horizons in lung cancer management through ATR/CHK1 pathway modulation. Thapa R, Afzal O, Bhat AA, Goyal A, Alfawaz Altamimi AS, Almalki WH, Alzarea SI, Kazmi I, Singh SK, Dua K, Thangavelu L, Gupta G. Future Med Chem; 2023 Oct 21; 15(19):1807-1818. PubMed ID: 37877252 [Abstract] [Full Text] [Related]
15. Identification of ATR-Chk1 pathway inhibitors that selectively target p53-deficient cells without directly suppressing ATR catalytic activity. Kawasumi M, Bradner JE, Tolliday N, Thibodeau R, Sloan H, Brummond KM, Nghiem P. Cancer Res; 2014 Dec 15; 74(24):7534-45. PubMed ID: 25336189 [Abstract] [Full Text] [Related]
19. APE2 is required for ATR-Chk1 checkpoint activation in response to oxidative stress. Willis J, Patel Y, Lentz BL, Yan S. Proc Natl Acad Sci U S A; 2013 Jun 25; 110(26):10592-7. PubMed ID: 23754435 [Abstract] [Full Text] [Related]
20. High-throughput drug screening identifies the ATR-CHK1 pathway as a therapeutic vulnerability of CALR mutated hematopoietic cells. Jia R, Kutzner L, Koren A, Runggatscher K, Májek P, Müller AC, Schuster M, Bock C, Loizou JI, Kubicek S, Kralovics R. Blood Cancer J; 2021 Jul 31; 11(7):137. PubMed ID: 34333533 [Abstract] [Full Text] [Related] Page: [Next] [New Search]