These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


194 related items for PubMed ID: 36290301

  • 21. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat.
    Zhang S, Zhang R, Song G, Gao J, Li W, Han X, Chen M, Li Y, Li G.
    BMC Plant Biol; 2018 Nov 26; 18(1):302. PubMed ID: 30477421
    [Abstract] [Full Text] [Related]

  • 22. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S, Dong S, Wang P, Tao Y, Wang Y.
    Appl Environ Microbiol; 2017 May 15; 83(10):. PubMed ID: 28258147
    [Abstract] [Full Text] [Related]

  • 23. A CRISPR/Cas9-based multicopy integration system for protein production in Aspergillus niger.
    Arentshorst M, Kooloth Valappil P, Mózsik L, Regensburg-Tuïnk TJG, Seekles SJ, Tjallinks G, Fraaije MW, Visser J, Ram AFJ.
    FEBS J; 2023 Nov 15; 290(21):5127-5140. PubMed ID: 37335926
    [Abstract] [Full Text] [Related]

  • 24. Efficient marker free CRISPR/Cas9 genome editing for functional analysis of gene families in filamentous fungi.
    van Leeuwe TM, Arentshorst M, Ernst T, Alazi E, Punt PJ, Ram AFJ.
    Fungal Biol Biotechnol; 2019 Nov 15; 6():13. PubMed ID: 31559019
    [Abstract] [Full Text] [Related]

  • 25. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L, Dong H, Zheng J, Wang B, Pan L.
    Microbiol Res; 2019 Nov 15; 223-225():44-50. PubMed ID: 31178050
    [Abstract] [Full Text] [Related]

  • 26. CRISPR/Cpf1-mediated mutagenesis and gene deletion in industrial filamentous fungi Aspergillus oryzae and Aspergillus sojae.
    Katayama T, Maruyama JI.
    J Biosci Bioeng; 2022 Apr 15; 133(4):353-361. PubMed ID: 35101371
    [Abstract] [Full Text] [Related]

  • 27. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae.
    Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama J.
    Biotechnol Lett; 2016 Apr 15; 38(4):637-42. PubMed ID: 26687199
    [Abstract] [Full Text] [Related]

  • 28. Progress and Challenges: Development and Implementation of CRISPR/Cas9 Technology in Filamentous Fungi.
    Wang Q, Coleman JJ.
    Comput Struct Biotechnol J; 2019 Apr 15; 17():761-769. PubMed ID: 31312414
    [Abstract] [Full Text] [Related]

  • 29. Novel genetic tools improve Penicillium expansum patulin synthase production in Aspergillus niger.
    Dai Z.
    FEBS J; 2023 Nov 15; 290(21):5094-5097. PubMed ID: 37794568
    [Abstract] [Full Text] [Related]

  • 30. CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer.
    Salazar-Cerezo S, Kun RS, de Vries RP, Garrigues S.
    Enzyme Microb Technol; 2020 Feb 15; 133():109463. PubMed ID: 31874686
    [Abstract] [Full Text] [Related]

  • 31. Development of a new Agrobacterium-mediated transformation system based on a dual auxotrophic approach in the filamentous fungus Aspergillus oryzae.
    Thai HD, Nguyen BT, Nguyen VM, Nguyen QH, Tran VT.
    World J Microbiol Biotechnol; 2021 May 04; 37(6):92. PubMed ID: 33945073
    [Abstract] [Full Text] [Related]

  • 32. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli.
    Nødvig CS, Hoof JB, Kogle ME, Jarczynska ZD, Lehmbeck J, Klitgaard DK, Mortensen UH.
    Fungal Genet Biol; 2018 Jun 04; 115():78-89. PubMed ID: 29325827
    [Abstract] [Full Text] [Related]

  • 33. Development of the thermophilic fungus Myceliophthora thermophila into glucoamylase hyperproduction system via the metabolic engineering using improved AsCas12a variants.
    Zhu Z, Zhang M, Liu D, Liu D, Sun T, Yang Y, Dong J, Zhai H, Sun W, Liu Q, Tian C.
    Microb Cell Fact; 2023 Aug 11; 22(1):150. PubMed ID: 37568174
    [Abstract] [Full Text] [Related]

  • 34. Impact of overexpressing NADH kinase on glucoamylase production in Aspergillus niger.
    Li LX, Yu LY, Wang B, Pan L.
    J Ind Microbiol Biotechnol; 2022 Jul 30; 49(4):. PubMed ID: 35665816
    [Abstract] [Full Text] [Related]

  • 35. CRISPR/Cas9-Based Genome Editing and Its Application in Aspergillus Species.
    Jin FJ, Wang BT, Wang ZD, Jin L, Han P.
    J Fungi (Basel); 2022 Apr 30; 8(5):. PubMed ID: 35628723
    [Abstract] [Full Text] [Related]

  • 36. Preservation stress resistance of melanin deficient conidia from Paecilomyces variotii and Penicillium roqueforti mutants generated via CRISPR/Cas9 genome editing.
    Seekles SJ, Teunisse PPP, Punt M, van den Brule T, Dijksterhuis J, Houbraken J, Wösten HAB, Ram AFJ.
    Fungal Biol Biotechnol; 2021 Apr 02; 8(1):4. PubMed ID: 33795004
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Development of genetic tools for Myceliophthora thermophila.
    Xu J, Li J, Lin L, Liu Q, Sun W, Huang B, Tian C.
    BMC Biotechnol; 2015 May 27; 15():35. PubMed ID: 26013561
    [Abstract] [Full Text] [Related]

  • 39. The opposite roles of agdA and glaA on citric acid production in Aspergillus niger.
    Wang L, Cao Z, Hou L, Yin L, Wang D, Gao Q, Wu Z, Wang D.
    Appl Microbiol Biotechnol; 2016 Jul 27; 100(13):5791-803. PubMed ID: 26837219
    [Abstract] [Full Text] [Related]

  • 40. Blocking drug efflux mechanisms facilitate genome engineering process in hypercellulolytic fungus, Penicillium funiculosum NCIM1228.
    Randhawa A, Pasari N, Sinha T, Gupta M, Nair AM, Ogunyewo OA, Verma S, Verma PK, Yazdani SS.
    Biotechnol Biofuels; 2021 Jan 25; 14(1):31. PubMed ID: 33494787
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.