These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


266 related items for PubMed ID: 36291103

  • 1. The Power of Gene Technologies: 1001 Ways to Create a Cell Model.
    Karagyaur M, Primak A, Efimenko A, Skryabina M, Tkachuk V.
    Cells; 2022 Oct 14; 11(20):. PubMed ID: 36291103
    [Abstract] [Full Text] [Related]

  • 2. CRISPR-Cas9, A Promising Therapeutic Tool for Cancer Therapy: A Review.
    Akram F, Ikram Ul Haq, Ahmed Z, Khan H, Ali MS.
    Protein Pept Lett; 2020 Oct 14; 27(10):931-944. PubMed ID: 32264803
    [Abstract] [Full Text] [Related]

  • 3. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V.
    AIDS Rev; 2017 Oct 14; 19(3):167-172. PubMed ID: 29019352
    [Abstract] [Full Text] [Related]

  • 4. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement.
    Zegeye WA, Tsegaw M, Zhang Y, Cao L.
    Int J Mol Sci; 2022 Apr 18; 23(8):. PubMed ID: 35457271
    [Abstract] [Full Text] [Related]

  • 5. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery.
    Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, Leong KW.
    Chem Rev; 2017 Aug 09; 117(15):9874-9906. PubMed ID: 28640612
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering.
    Wada N, Ueta R, Osakabe Y, Osakabe K.
    BMC Plant Biol; 2020 May 25; 20(1):234. PubMed ID: 32450802
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Genome editing in the mammalian brain using the CRISPR-Cas system.
    Nishiyama J.
    Neurosci Res; 2019 Apr 25; 141():4-12. PubMed ID: 30076877
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes.
    Schuster M, Kahmann R.
    Fungal Genet Biol; 2019 Sep 25; 130():43-53. PubMed ID: 31048007
    [Abstract] [Full Text] [Related]

  • 16. CRISPR/Cas genome editing systems in thermophiles: Current status, associated challenges, and future perspectives.
    Le Y, Sun J.
    Adv Appl Microbiol; 2022 Sep 25; 118():1-30. PubMed ID: 35461662
    [Abstract] [Full Text] [Related]

  • 17. CRISPR/Cas9-Based Genome Editing in Plants.
    Zhang Y, Ma X, Xie X, Liu YG.
    Prog Mol Biol Transl Sci; 2017 Sep 25; 149():133-150. PubMed ID: 28712494
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential.
    Oude Blenke E, Evers MJ, Mastrobattista E, van der Oost J.
    J Control Release; 2016 Dec 28; 244(Pt B):139-148. PubMed ID: 27498021
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.