These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 36298405

  • 1. A Decision-Making Strategy for Car Following Based on Naturalist Driving Data via Deep Reinforcement Learning.
    Li W, Zhang Y, Shi X, Qiu F.
    Sensors (Basel); 2022 Oct 21; 22(20):. PubMed ID: 36298405
    [Abstract] [Full Text] [Related]

  • 2. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning.
    Wang Z, Huang H, Tang J, Meng X, Hu L.
    Accid Anal Prev; 2022 Sep 21; 174():106729. PubMed ID: 35700685
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. A Multi-Task Fusion Strategy-Based Decision-Making and Planning Method for Autonomous Driving Vehicles.
    Liu W, Xiang Z, Fang H, Huo K, Wang Z.
    Sensors (Basel); 2023 Aug 08; 23(16):. PubMed ID: 37631557
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in Sparse Reward Environments.
    Park M, Lee SY, Hong JS, Kwon NK.
    Sensors (Basel); 2022 Dec 07; 22(24):. PubMed ID: 36559941
    [Abstract] [Full Text] [Related]

  • 9. End-to-End Automated Lane-Change Maneuvering Considering Driving Style Using a Deep Deterministic Policy Gradient Algorithm.
    Hu H, Lu Z, Wang Q, Zheng C.
    Sensors (Basel); 2020 Sep 22; 20(18):. PubMed ID: 32971987
    [Abstract] [Full Text] [Related]

  • 10. Modeling Car-Following Behaviors and Driving Styles with Generative Adversarial Imitation Learning.
    Zhou Y, Fu R, Wang C, Zhang R.
    Sensors (Basel); 2020 Sep 04; 20(18):. PubMed ID: 32899773
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Multi-Agent Decision-Making Modes in Uncertain Interactive Traffic Scenarios via Graph Convolution-Based Deep Reinforcement Learning.
    Gao X, Li X, Liu Q, Li Z, Yang F, Luan T.
    Sensors (Basel); 2022 Jun 17; 22(12):. PubMed ID: 35746364
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Towards Robust Decision-Making for Autonomous Highway Driving Based on Safe Reinforcement Learning.
    Zhao R, Chen Z, Fan Y, Li Y, Gao F.
    Sensors (Basel); 2024 Jun 26; 24(13):. PubMed ID: 39000919
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Safe Decision Controller for Autonomous DrivingBased on Deep Reinforcement Learning inNondeterministic Environment.
    Chen H, Zhang Y, Bhatti UA, Huang M.
    Sensors (Basel); 2023 Jan 20; 23(3):. PubMed ID: 36772238
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.