These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
174 related items for PubMed ID: 36301705
1. Non-invasive blood pressure estimation combining deep neural networks with pre-training and partial fine-tuning. Meng Z, Yang X, Liu X, Wang D, Han X. Physiol Meas; 2022 Nov 11; 43(11):. PubMed ID: 36301705 [Abstract] [Full Text] [Related]
2. Photoplethysmography-based cuffless blood pressure estimation: an image encoding and fusion approach. Liu Y, Yu J, Mou H. Physiol Meas; 2023 Dec 15; 44(12):. PubMed ID: 38099538 [Abstract] [Full Text] [Related]
3. A deep learning method for continuous noninvasive blood pressure monitoring using photoplethysmography. Liang H, He W, Xu Z. Physiol Meas; 2023 May 22; 44(5):. PubMed ID: 37116508 [Abstract] [Full Text] [Related]
4. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network. Khodabakhshi MB, Eslamyeh N, Sadredini SZ, Ghamari M. Comput Methods Programs Biomed; 2022 Nov 22; 226():107131. PubMed ID: 36137326 [Abstract] [Full Text] [Related]
5. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections. Lai K, Wang X, Cao C. Sensors (Basel); 2024 Apr 24; 24(9):. PubMed ID: 38732827 [Abstract] [Full Text] [Related]
6. Concatenated convolutional neural network model for cuffless blood pressure estimation using fuzzy recurrence properties of photoplethysmogram signals. Malayeri AB, Khodabakhshi MB. Sci Rep; 2022 Apr 22; 12(1):6633. PubMed ID: 35459260 [Abstract] [Full Text] [Related]
7. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model. Li Z, He W. Sensors (Basel); 2021 Oct 29; 21(21):. PubMed ID: 34770514 [Abstract] [Full Text] [Related]
8. Cuff-Less Blood Pressure Estimation via Small Convolutional Neural Networks. Wang W, Mohseni P, Kilgore K, Najafizadeh L. Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov 29; 2021():1031-1034. PubMed ID: 34891464 [Abstract] [Full Text] [Related]
9. Calibration-free blood pressure estimation based on a convolutional neural network. Cho J, Shin H, Choi A. Psychophysiology; 2024 Apr 29; 61(4):e14480. PubMed ID: 37971153 [Abstract] [Full Text] [Related]
11. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework. Pankaj, Kumar A, Komaragiri R, Kumar M. Phys Eng Sci Med; 2023 Dec 29; 46(4):1589-1605. PubMed ID: 37747644 [Abstract] [Full Text] [Related]
14. BP-diff: a conditional diffusion model for cuffless continuous BP waveform estimation using U-Net. Liu Y, Yu J, Mou H. Physiol Meas; 2024 Oct 14; 45(10):. PubMed ID: 39321963 [Abstract] [Full Text] [Related]
15. Generalized Deep Neural Network Model for Cuffless Blood Pressure Estimation with Photoplethysmogram Signal Only. Hsu YC, Li YH, Chang CC, Harfiya LN. Sensors (Basel); 2020 Oct 04; 20(19):. PubMed ID: 33020401 [Abstract] [Full Text] [Related]
16. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms. Baker S, Xiang W, Atkinson I. Comput Methods Programs Biomed; 2021 Aug 04; 207():106191. PubMed ID: 34077866 [Abstract] [Full Text] [Related]
20. DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography. Kim DK, Kim YT, Kim H, Kim DJ. IEEE J Biomed Health Inform; 2022 Aug 04; 26(8):3697-3707. PubMed ID: 35511844 [Abstract] [Full Text] [Related] Page: [Next] [New Search]