These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
283 related items for PubMed ID: 36303364
1. An ultrafast electrochemical synthesis of Au@Ag core-shell nanoflowers as a SERS substrate for thiram detection in milk and juice. Wang J, Luo Z, Lin X. Food Chem; 2023 Feb 15; 402():134433. PubMed ID: 36303364 [Abstract] [Full Text] [Related]
2. Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce. Asgari S, Sun L, Lin J, Weng Z, Wu G, Zhang Y, Lin M. Mikrochim Acta; 2020 Jun 16; 187(7):390. PubMed ID: 32548791 [Abstract] [Full Text] [Related]
3. Two-dimensional self-assembled Au-Ag core-shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy. Pu H, Huang Z, Xu F, Sun DW. Food Chem; 2021 May 01; 343():128548. PubMed ID: 33221103 [Abstract] [Full Text] [Related]
4. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS. Hussain A, Sun DW, Pu H. Food Chem; 2020 Jul 01; 317():126429. PubMed ID: 32109658 [Abstract] [Full Text] [Related]
5. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice. Zhang Y, Wang Y, Liu A, Liu S. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep 05; 297():122721. PubMed ID: 37054572 [Abstract] [Full Text] [Related]
6. Core size optimized silver coated gold nanoparticles for rapid screening of tricyclazole and thiram residues in pear extracts using SERS. Hussain N, Pu H, Sun DW. Food Chem; 2021 Jul 15; 350():129025. PubMed ID: 33609938 [Abstract] [Full Text] [Related]
7. Au nanoparticles decorated covalent organic framework composite for SERS analyses of malachite green and thiram residues in foods. Cheng Y, Ding Y, Chen J, Xu W, Wang W, Xu S. Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov 15; 281():121644. PubMed ID: 35878495 [Abstract] [Full Text] [Related]
8. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Wang C, Wu X, Dong P, Chen J, Xiao R. Biosens Bioelectron; 2016 Dec 15; 86():944-950. PubMed ID: 27498319 [Abstract] [Full Text] [Related]
9. Facile synthesis of Au@Ag core-shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Chen Z, Sun Y, Shi J, Zhang W, Zhang X, Huang X, Zou X, Li Z, Wei R. Food Chem; 2022 Feb 15; 370():131276. PubMed ID: 34662790 [Abstract] [Full Text] [Related]
10. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Wang K, Sun DW, Pu H, Wei Q. Food Chem; 2020 Apr 25; 310():125923. PubMed ID: 31837530 [Abstract] [Full Text] [Related]
11. 4-Mercaptobenzoic Acid Labeled Gold-Silver-Alloy-Embedded Silica Nanoparticles as an Internal Standard Containing Nanostructures for Sensitive Quantitative Thiram Detection. Pham XH, Hahm E, Huynh KH, Son BS, Kim HM, Jeong DH, Jun BH. Int J Mol Sci; 2019 Sep 29; 20(19):. PubMed ID: 31569479 [Abstract] [Full Text] [Related]
12. Rapid determination of thiram on apple using a flexible bacterial cellulose-based SERS substrate. Xiao L, Feng S, Hua MZ, Lu X. Talanta; 2023 Mar 01; 254():124128. PubMed ID: 36462280 [Abstract] [Full Text] [Related]
13. Detection of thiram on fruit surfaces and in juices with minimum sample pretreatment via a bendable and reusable substrate for surface-enhanced Raman scattering. Wu J, Huang Y, Miao J, Lai K. J Sci Food Agric; 2022 Nov 01; 102(14):6211-6219. PubMed ID: 35478166 [Abstract] [Full Text] [Related]
14. High-performance homogeneous carboxymethylcellulose-stabilized Au@Ag NRs-CMC surface-enhanced Raman scattering chip for thiram detection in fruits. Hu B, Sun DW, Pu H, Huang Z. Food Chem; 2023 Jun 30; 412():135332. PubMed ID: 36774690 [Abstract] [Full Text] [Related]
15. Ag-modified CuO cavity arrays as a SERS-electrochemical dual signal platform for thiram detection. Shao X, Zhao Q, Xia J, Xie M, Li Q, Tang Y, Gu X, Ning X, Geng S, Fu J, Tian S. Talanta; 2024 Jul 01; 274():125989. PubMed ID: 38537357 [Abstract] [Full Text] [Related]
16. Ultrasensitive detection of thiram based on surface-enhanced Raman scattering via Au@Ag@Ag core/shell/shell bimetallic nanorods. Wang Y, Liu S, Hu Y, Fu C, Chen W. Analyst; 2023 Oct 23; 148(21):5435-5444. PubMed ID: 37750326 [Abstract] [Full Text] [Related]
17. Spiky yolk-shell AuAg bimetallic nanorods with uniform interior gap for the SERS detection of thiram residues in fruit juice. Zhu J, Zhang S, Weng GJ, Li JJ, Zhao JW. Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec 05; 262():120108. PubMed ID: 34198118 [Abstract] [Full Text] [Related]
18. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Yaseen T, Pu H, Sun DW. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 May 05; 36(5):762-778. PubMed ID: 30943113 [Abstract] [Full Text] [Related]
19. Gap controlled self-assembly Au@Ag@Au NPs for SERS assay of thiram. Zhang J, Wu C, Yuan R, Huang JA, Yang X. Food Chem; 2022 Oct 01; 390():133164. PubMed ID: 35551030 [Abstract] [Full Text] [Related]
20. Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core-shell nanospheres for reliable quantitative SERS measurements. Lin S, Lin X, Han S, Liu Y, Hasi W, Wang L. Anal Chim Acta; 2020 Apr 29; 1108():167-176. PubMed ID: 32222238 [Abstract] [Full Text] [Related] Page: [Next] [New Search]