These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
283 related items for PubMed ID: 36303364
21. Interfacial layer-by-layer self-assembly of PS nanospheres and Au@Ag nanorods for fabrication of broadband and sensitive SERS substrates. Li X, Lin X, Fang G, Dong H, Li J, Cong S, Wang L, Yang S. J Colloid Interface Sci; 2022 Aug 15; 620():388-398. PubMed ID: 35436620 [Abstract] [Full Text] [Related]
22. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Bai T, Wang M, Cao M, Zhang J, Zhang K, Zhou P, Liu Z, Liu Y, Guo Z, Lu X. Anal Bioanal Chem; 2018 Mar 15; 410(9):2291-2303. PubMed ID: 29445833 [Abstract] [Full Text] [Related]
23. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring. Zhang L, Jiang C, Zhang Z. Nanoscale; 2013 May 07; 5(9):3773-9. PubMed ID: 23535912 [Abstract] [Full Text] [Related]
24. Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement. Guo P, Sikdar D, Huang X, Si KJ, Xiong W, Gong S, Yap LW, Premaratne M, Cheng W. Nanoscale; 2015 Feb 21; 7(7):2862-8. PubMed ID: 25599516 [Abstract] [Full Text] [Related]
25. Label-free surface-enhanced Raman scattering strategy for rapid detection of penicilloic acid in milk products. Qi M, Huang X, Zhou Y, Zhang L, Jin Y, Peng Y, Jiang H, Du S. Food Chem; 2016 Apr 15; 197(Pt A):723-9. PubMed ID: 26617009 [Abstract] [Full Text] [Related]
26. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. Zhang M, Chen T, Liu Y, Zhang J, Sun H, Yang J, Zhu J, Liu J, Wu Y. ACS Sens; 2018 Nov 26; 3(11):2446-2454. PubMed ID: 30335972 [Abstract] [Full Text] [Related]
27. Detection and quantification of toxicants in food and water using Ag-Au core-shell fractal SERS nanostructures and multivariate analysis. Raveendran J, Docoslis A. Talanta; 2021 Aug 15; 231():122383. PubMed ID: 33965045 [Abstract] [Full Text] [Related]
28. Facile synthesis of Fe3O4@Au core-shell nanocomposite as a recyclable magnetic surface enhanced Raman scattering substrate for thiram detection. Han D, Li B, Chen Y, Wu T, Kou Y, Xue X, Chen L, Liu Y, Duan Q. Nanotechnology; 2019 Nov 15; 30(46):465703. PubMed ID: 31476137 [Abstract] [Full Text] [Related]
29. Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity. Chang H, Kang H, Yang JK, Jo A, Lee HY, Lee YS, Jeong DH. ACS Appl Mater Interfaces; 2014 Aug 13; 6(15):11859-63. PubMed ID: 25078544 [Abstract] [Full Text] [Related]
30. Simultaneous In Situ Extraction and Fabrication of Surface-Enhanced Raman Scattering Substrate for Reliable Detection of Thiram Residue. Chen M, Luo W, Liu Q, Hao N, Zhu Y, Liu M, Wang L, Yang H, Chen X. Anal Chem; 2018 Nov 20; 90(22):13647-13654. PubMed ID: 30379069 [Abstract] [Full Text] [Related]
31. Sensitive and handy detection of pesticide residue on fruit surface based on single microsphere surface-enhanced Raman spectroscopy technique. Feng Y, Wang X, Chang Y, Guo J, Wang C. J Colloid Interface Sci; 2022 Dec 15; 628(Pt B):116-128. PubMed ID: 35987151 [Abstract] [Full Text] [Related]
32. Flexible SERS Substrate with a Ag-SiO2 Cosputtered Film for the Rapid and Convenient Detection of Thiram. Liang L, Zhao X, Wen J, Liu J, Zhang F, Guo X, Zhang K, Wang A, Gao R, Wang Y, Zhang Y. Langmuir; 2022 Nov 15; 38(45):13753-13762. PubMed ID: 36331054 [Abstract] [Full Text] [Related]
33. Extralong hot-spots sensor for SERS sensitive detection of phthalate plasticizers in biological tear and serum fluids. Xu Z, Luan L, Li P, Dong K. Anal Bioanal Chem; 2024 Aug 15; 416(19):4301-4313. PubMed ID: 38852120 [Abstract] [Full Text] [Related]
34. "On-site" analysis of pesticide residues in complex sample matrix by plasmonic SERS nanostructure hybridized hydrogel. Qi G, Wang Y, Liu T, Sun D. Anal Chim Acta; 2023 Nov 22; 1282():341903. PubMed ID: 37923404 [Abstract] [Full Text] [Related]
35. Optimized core-shell Au@Ag nanoparticles for label-free Raman determination of trace Rhodamine B with cancer risk in food product. Wang H, Guo X, Fu S, Yang T, Wen Y, Yang H. Food Chem; 2015 Dec 01; 188():137-42. PubMed ID: 26041175 [Abstract] [Full Text] [Related]
36. Au-Ag OHCs-based SERS sensor coupled with deep learning CNN algorithm to quantify thiram and pymetrozine in tea. Li H, Luo X, Haruna SA, Zareef M, Chen Q, Ding Z, Yan Y. Food Chem; 2023 Dec 01; 428():136798. PubMed ID: 37423106 [Abstract] [Full Text] [Related]
37. Size-tunable Au@Ag nanoparticles for colorimetric and SERS dual-mode sensing of palmatine in traditional Chinese medicine. Gao Y, Hu Z, Wu J, Ning Z, Jian J, Zhao T, Liang X, Yang X, Yang Z, Zhao Q, Wang J, Wang Z, Dina NE, Gherman AMR, Jiang Z, Zhou H. J Pharm Biomed Anal; 2019 Sep 10; 174():123-133. PubMed ID: 31163346 [Abstract] [Full Text] [Related]
38. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO2 Core-Shell Nanostructures Used for an Ultrasensitive SERS Immunoassay of Alpha-Fetoprotein. Yang Y, Zhu J, Zhao J, Weng GJ, Li JJ, Zhao JW. ACS Appl Mater Interfaces; 2019 Jan 23; 11(3):3617-3626. PubMed ID: 30608142 [Abstract] [Full Text] [Related]
39. Au@Ag nanodome-cones array substrate for efficient residue analysis of food samples by surface-enhanced Raman scattering. Lai H, Li G, Zhang Z. Anal Chim Acta; 2023 Jun 08; 1259():341159. PubMed ID: 37100472 [Abstract] [Full Text] [Related]
40. Determination of thiram in fruit juices using a bacterial cellulose nanocrystal-based SERS substrate. Xiao L, Hua MZ, Lu X. Int J Biol Macromol; 2024 Jan 08; 255():128207. PubMed ID: 37979753 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]