These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 36308928

  • 1. Self-assembly of Au nanocrystals into large-area 3-D ordered flexible superlattice nanostructures arrays for ultrasensitive trace multi-hazard detection.
    Liu W, Li Q, Wu J, Wang W, Jiang R, Zhou C, Wang S, Zhang X, Sun T, Xu Z, Wang D.
    J Hazard Mater; 2023 Feb 05; 443(Pt A):130124. PubMed ID: 36308928
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H, Du M, Zhang M, Wang P, Bao S, Zou M, Fu Y, Yao J.
    Biosens Bioelectron; 2014 Apr 15; 54():91-101. PubMed ID: 24252765
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. MOF-derived multi-"hotspot" 3D Au/MOF-808 (Zr) nanostructures as SERS substrates for the ultrasensitive determination of thiram.
    Ge B, Huang J, Qin H, Zhao S, Yang F, Wang M, Liang P.
    Mikrochim Acta; 2024 May 07; 191(6):308. PubMed ID: 38714541
    [Abstract] [Full Text] [Related]

  • 6. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring.
    Zhang L, Jiang C, Zhang Z.
    Nanoscale; 2013 May 07; 5(9):3773-9. PubMed ID: 23535912
    [Abstract] [Full Text] [Related]

  • 7. Mechanistic understanding of nanoparticle interactions to achieve highly-ordered arrays through self-assembly for sensitive surface-enhanced Raman scattering detection of trace thiram.
    Lin G, Zhou X, Lijie L.
    Food Chem; 2024 Oct 15; 455():139852. PubMed ID: 38823142
    [Abstract] [Full Text] [Related]

  • 8. Detection of thiram on fruit surfaces and in juices with minimum sample pretreatment via a bendable and reusable substrate for surface-enhanced Raman scattering.
    Wu J, Huang Y, Miao J, Lai K.
    J Sci Food Agric; 2022 Nov 15; 102(14):6211-6219. PubMed ID: 35478166
    [Abstract] [Full Text] [Related]

  • 9. Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs.
    Chen B, Meng G, Zhou F, Huang Q, Zhu C, Hu X, Kong M.
    Nanotechnology; 2014 Apr 11; 25(14):145605. PubMed ID: 24633265
    [Abstract] [Full Text] [Related]

  • 10. All-Hot-Spot Bulk Surface-Enhanced Raman Scattering (SERS) Substrates: Attomolar Detection of Adsorbates with Designer Plasmonic Nanoparticles.
    Zhao Q, Hilal H, Kim J, Park W, Haddadnezhad M, Lee J, Park W, Lee JW, Lee S, Jung I, Park S.
    J Am Chem Soc; 2022 Jul 27; 144(29):13285-13293. PubMed ID: 35839479
    [Abstract] [Full Text] [Related]

  • 11. Au Nanoparticles Deposited on Magnetic Carbon Nanofibers as the Ultrahigh Sensitive Substrate for Surface-Enhanced Raman Scattering: Detections of Rhodamine 6G and Aromatic Amino Acids.
    Wu HC, Chen TC, Tsai HJ, Chen CS.
    Langmuir; 2018 Nov 27; 34(47):14158-14168. PubMed ID: 30380878
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Polymer multilayers enabled stable and flexible Au@Ag nanoparticle array for nondestructive SERS detection of pesticide residues.
    Wang K, Sun DW, Pu H, Wei Q.
    Talanta; 2021 Feb 01; 223(Pt 2):121782. PubMed ID: 33298287
    [Abstract] [Full Text] [Related]

  • 14. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.
    Li J, Zhu Z, Zhu B, Ma Y, Lin B, Liu R, Song Y, Lin H, Tu S, Yang C.
    Anal Chem; 2016 Aug 02; 88(15):7828-36. PubMed ID: 27385563
    [Abstract] [Full Text] [Related]

  • 15. Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides.
    Khlebtsov BN, Khanadeev VA, Panfilova EV, Bratashov DN, Khlebtsov NG.
    ACS Appl Mater Interfaces; 2015 Apr 01; 7(12):6518-29. PubMed ID: 25764374
    [Abstract] [Full Text] [Related]

  • 16. Green and sustainable self-cleaning flexible SERS base: Utilized for cyclic-detection of residues on apple surface.
    Chen Z, Sun Y, Zhang X, Shen Y, Khalifa SAM, Huang X, Shi J, Li Z, Zou X.
    Food Chem; 2024 May 30; 441():138345. PubMed ID: 38185049
    [Abstract] [Full Text] [Related]

  • 17. Fabrication of versatile Fe3O4/GO/Au composite nanomaterial as SERS-active substrate for detection of pesticide residue.
    Wu R, Song X, Tian G.
    Environ Sci Pollut Res Int; 2024 Jul 30; 31(32):44759-44769. PubMed ID: 38955969
    [Abstract] [Full Text] [Related]

  • 18. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS, Jones S, Pramanik A, Ray PC.
    Acc Chem Res; 2016 Dec 20; 49(12):2725-2735. PubMed ID: 27993003
    [Abstract] [Full Text] [Related]

  • 19. Rapid fabrication of the Au hexagonal cone arrays for SERS applications.
    Liu C, Yuan X, Wu J, Wang S, Fang J.
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb 05; 286():121969. PubMed ID: 36323080
    [Abstract] [Full Text] [Related]

  • 20. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch.
    Masterson AN, Hati S, Ren G, Liyanage T, Manicke NE, Goodpaster JV, Sardar R.
    Anal Chem; 2021 Feb 02; 93(4):2578-2588. PubMed ID: 33432809
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.