These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


275 related items for PubMed ID: 3631291

  • 21. Transient rheological behavior of blood in low-shear tube flow: velocity profiles and effective viscosity.
    Alonso C, Pries AR, Kiesslich O, Lerche D, Gaehtgens P.
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H25-32. PubMed ID: 7840268
    [Abstract] [Full Text] [Related]

  • 22. Influence of wall surface on the flow of blood through endothelial-lined glass tubes.
    Fenton BM, Cokelet GR, la Celle PL.
    Int J Microcirc Clin Exp; 1982 Jan; 1(2):157-62. PubMed ID: 7188505
    [Abstract] [Full Text] [Related]

  • 23. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D, Frömer D.
    Biorheology; 2001 Jan; 38(2-3):249-62. PubMed ID: 11381179
    [Abstract] [Full Text] [Related]

  • 24. Blood viscosity and optimal hematocrit in narrow tubes.
    Stadler AA, Zilow EP, Linderkamp O.
    Biorheology; 1990 Jan; 27(5):779-88. PubMed ID: 2271768
    [Abstract] [Full Text] [Related]

  • 25. A model for red blood cell motion in glycocalyx-lined capillaries.
    Secomb TW, Hsu R, Pries AR.
    Am J Physiol; 1998 Mar; 274(3):H1016-22. PubMed ID: 9530216
    [Abstract] [Full Text] [Related]

  • 26. Fåhraeus and Fåhreaus-Lindqvist effects for neonatal and adult red blood cell suspensions.
    McKay CB, Linderkamp O, Meiselman HJ.
    Pediatr Res; 1993 Oct; 34(4):538-43. PubMed ID: 8255690
    [Abstract] [Full Text] [Related]

  • 27. Activation of N-methyl D-aspartate (NMDA) receptors has no influence on rheological properties of erythrocytes.
    Reinhart WH, Geissmann-Ott C, Bogdanova A.
    Clin Hemorheol Microcirc; 2011 Oct; 49(1-4):307-13. PubMed ID: 22214702
    [Abstract] [Full Text] [Related]

  • 28. Effects of flow geometry on blood viscoelasticity.
    Thurston GB, Henderson NM.
    Biorheology; 2006 Oct; 43(6):729-46. PubMed ID: 17148856
    [Abstract] [Full Text] [Related]

  • 29. Rheological properties of blood and their possible role in the circulation and development of intracranial hemorrhage in preterm infants.
    Linderkamp O, Betke K.
    Klin Padiatr; 1985 Oct; 197(4):319-21. PubMed ID: 4046488
    [Abstract] [Full Text] [Related]

  • 30. Rheology of the cerebral circulation.
    Kee DB, Wood JH.
    Neurosurgery; 1984 Jul; 15(1):125-31. PubMed ID: 6206438
    [Abstract] [Full Text] [Related]

  • 31. Nitric oxide generation by endothelial cells exposed to shear stress in glass tubes perfused with red blood cell suspensions: role of aggregation.
    Yalcin O, Ulker P, Yavuzer U, Meiselman HJ, Baskurt OK.
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2098-105. PubMed ID: 18326799
    [Abstract] [Full Text] [Related]

  • 32. Flow-dependent rheological properties of blood in capillaries.
    Secomb TW.
    Microvasc Res; 1987 Jul; 34(1):46-58. PubMed ID: 3657604
    [Abstract] [Full Text] [Related]

  • 33. Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging.
    Pfafferott C, Nash GB, Meiselman HJ.
    Biophys J; 1985 May; 47(5):695-704. PubMed ID: 4016189
    [Abstract] [Full Text] [Related]

  • 34. [The effects of mesenteric lymph drainage on erythrocyte rheology in rats with hemorrhagic shock].
    Zhao ZG, Nju CY, Hi ZP, Zhang M, Xu GJ, Jiang H, Zhang J.
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2012 Mar; 28(2):149-53. PubMed ID: 22737918
    [Abstract] [Full Text] [Related]

  • 35. Comparative rheology of nucleated and non-nucleated red blood cells. II. Rheological properties of avian red cells suspensions in narrow capillaries.
    Gaehtgens P, Will G, Schmidt F.
    Pflugers Arch; 1981 Jun; 390(3):283-7. PubMed ID: 7196029
    [Abstract] [Full Text] [Related]

  • 36. Perturbation of red blood cell flow in small tubes by white blood cells.
    Thompson TN, La Celle PL, Cokelet GR.
    Pflugers Arch; 1989 Feb; 413(4):372-7. PubMed ID: 2928089
    [Abstract] [Full Text] [Related]

  • 37. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER.
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [Abstract] [Full Text] [Related]

  • 38. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall.
    Sharan M, Popel AS.
    Biorheology; 2001 Jan; 38(5-6):415-28. PubMed ID: 12016324
    [Abstract] [Full Text] [Related]

  • 39. Alteration of red cell membrane viscoelasticity by heat treatment: effect on cell deformability and suspension viscosity.
    Nash GB, Meiselman HJ.
    Biorheology; 1985 Jan; 22(1):73-84. PubMed ID: 3986320
    [Abstract] [Full Text] [Related]

  • 40. The flow behavior of lysolecithin-induced echinocytes.
    Rogausch H.
    Biorheology; 1984 Jan; 21(6):757-65. PubMed ID: 6518288
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.