These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 36331209

  • 21. Creation of magnetic skyrmions by surface acoustic waves.
    Yokouchi T, Sugimoto S, Rana B, Seki S, Ogawa N, Kasai S, Otani Y.
    Nat Nanotechnol; 2020 May; 15(5):361-366. PubMed ID: 32231267
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Current-Induced Nucleation and Annihilation of Magnetic Skyrmions at Room Temperature in a Chiral Magnet.
    Yu X, Morikawa D, Tokunaga Y, Kubota M, Kurumaji T, Oike H, Nakamura M, Kagawa F, Taguchi Y, Arima TH, Kawasaki M, Tokura Y.
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28370455
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Geometric phase analysis of magnetic skyrmion lattices in Lorentz transmission electron microscopy images.
    Denneulin T, Kovács A, Boltje R, Kiselev NS, Dunin-Borkowski RE.
    Sci Rep; 2024 May 29; 14(1):12286. PubMed ID: 38811716
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Electrical manipulation of skyrmions in a chiral magnet.
    Wang W, Song D, Wei W, Nan P, Zhang S, Ge B, Tian M, Zang J, Du H.
    Nat Commun; 2022 Mar 24; 13(1):1593. PubMed ID: 35332156
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Reversible Transformation between Isolated Skyrmions and Bimerons.
    Ohara K, Zhang X, Chen Y, Kato S, Xia J, Ezawa M, Tretiakov OA, Hou Z, Zhou Y, Zhao G, Yang J, Liu X.
    Nano Lett; 2022 Nov 09; 22(21):8559-8566. PubMed ID: 36259745
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures.
    Lemesh I, Litzius K, Böttcher M, Bassirian P, Kerber N, Heinze D, Zázvorka J, Büttner F, Caretta L, Mann M, Weigand M, Finizio S, Raabe J, Im MY, Stoll H, Schütz G, Dupé B, Kläui M, Beach GSD.
    Adv Mater; 2018 Dec 09; 30(49):e1805461. PubMed ID: 30368960
    [Abstract] [Full Text] [Related]

  • 37. Single Chiral Skyrmions in Ultrathin Magnetic Films.
    Aranda AR, Guslienko KY.
    Materials (Basel); 2018 Nov 11; 11(11):. PubMed ID: 30423873
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Controlled Switching of the Number of Skyrmions in a Magnetic Nanodot by Electric Fields.
    Hou Z, Wang Y, Lan X, Li S, Wan X, Meng F, Hu Y, Fan Z, Feng C, Qin M, Zeng M, Zhang X, Liu X, Fu X, Yu G, Zhou G, Zhou Y, Zhao W, Gao X, Liu JM.
    Adv Mater; 2022 Mar 11; 34(11):e2107908. PubMed ID: 34969153
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.