These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 36334660

  • 21. Outer bark thickness decreases more with height on stems of fire-resistant than fire-sensitive Floridian oaks (Quercus spp.; Fagaceae).
    Graves SJ, Rifai SW, Putz FE.
    Am J Bot; 2014 Dec; 101(12):2183-8. PubMed ID: 25480714
    [Abstract] [Full Text] [Related]

  • 22. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience.
    Hood SM, Baker S, Sala A.
    Ecol Appl; 2016 Oct; 26(7):1984-2000. PubMed ID: 27755724
    [Abstract] [Full Text] [Related]

  • 23. [A preliminary study on the chemical properties of precipitation, throughfall, stemflow and surface run-off in major forest types at Dinghushan under acid deposition].
    Liu J, Zhang D, Zhou G, Wen D, Zhang Q.
    Ying Yong Sheng Tai Xue Bao; 2003 Aug; 14(8):1223-8. PubMed ID: 14655347
    [Abstract] [Full Text] [Related]

  • 24. Plant and soil carbon accumulation following fire in Mediterranean woodlands in Spain.
    Kaye JP, Romanyà J, Vallejo VR.
    Oecologia; 2010 Oct; 164(2):533-43. PubMed ID: 20499102
    [Abstract] [Full Text] [Related]

  • 25. Factors influencing bark beetle outbreaks after forest fires on the Iberian Peninsula.
    Lombardero MJ, Ayres MP.
    Environ Entomol; 2011 Oct; 40(5):1007-18. PubMed ID: 22251713
    [Abstract] [Full Text] [Related]

  • 26. Sustaining eastern oak forests: Synergistic effects of fire and topography on vegetation and fuels.
    Hutchinson TF, Adams BT, Dickinson MB, Heckel M, Royo AA, Thomas-Van Gundy MA.
    Ecol Appl; 2024 Apr; 34(3):e2948. PubMed ID: 38351586
    [Abstract] [Full Text] [Related]

  • 27. Bioturbation by mammals and fire interact to alter ecosystem-level nutrient dynamics in longleaf pine forests.
    Clark KL, Branch LC, Farrington J.
    PLoS One; 2018 Apr; 13(8):e0201137. PubMed ID: 30133444
    [Abstract] [Full Text] [Related]

  • 28. Effects of forest fire on soil nutrients in Turkish pine (Pinus brutia, Ten) ecosystems.
    Yildiz O, Esen D, Sarginci M, Toprak B.
    J Environ Biol; 2010 Apr; 31(1-2):11-3. PubMed ID: 20648809
    [Abstract] [Full Text] [Related]

  • 29. Forest floor depth mediates understory vigor in xeric Pinus palustris ecosystems.
    Hiers JK, O'Brien JJ, Will RE, Mitchell RJ.
    Ecol Appl; 2007 Apr; 17(3):806-14. PubMed ID: 17494398
    [Abstract] [Full Text] [Related]

  • 30. Influences of secondary disturbances on lodgepole pine stand development in Rocky Mountain National Park.
    Sibold JS, Veblen TT, Chipko K, Lawson L, Mathis E, Scott J.
    Ecol Appl; 2007 Sep; 17(6):1638-55. PubMed ID: 17913129
    [Abstract] [Full Text] [Related]

  • 31. Grassland restoration with and without fire: evidence from a tree-removal experiment.
    Halpern CB, Haugo RD, Antos JA, Kaas SS, Kilanowski AL.
    Ecol Appl; 2012 Mar; 22(2):425-41. PubMed ID: 22611845
    [Abstract] [Full Text] [Related]

  • 32. Mesophication in temperate Europe: A dendrochronological reconstruction of tree succession and fires in a mixed deciduous stand in Białowieża Forest.
    Spînu AP, Niklasson M, Zin E.
    Ecol Evol; 2020 Jan; 10(2):1029-1041. PubMed ID: 32015862
    [Abstract] [Full Text] [Related]

  • 33. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season.
    Sala A, Peters GD, McIntyre LR, Harrington MG.
    Tree Physiol; 2005 Mar; 25(3):339-48. PubMed ID: 15631982
    [Abstract] [Full Text] [Related]

  • 34. Detecting patterns of post-fire pine regeneration in a Madrean Sky Island with field surveys and remote sensing.
    Barton AM, Poulos HM, Koch GW, Kolb TE, Thode AE.
    Sci Total Environ; 2023 Apr 01; 867():161517. PubMed ID: 36638974
    [Abstract] [Full Text] [Related]

  • 35. Thinning and plantation of resprouting species redirect overstocked pine stands towards more functional communities in the Mediterranean basin.
    Moghli A, Santana VM, Soliveres S, Baeza MJ.
    Sci Total Environ; 2022 Feb 01; 806(Pt 3):150715. PubMed ID: 34610406
    [Abstract] [Full Text] [Related]

  • 36. Regeneration strategies and forest resilience to changing fire regimes: Insights from a Goldilocks model.
    Ramiadantsoa T, Ratajczak Z, Turner MG.
    Ecology; 2023 Jun 01; 104(6):e4041. PubMed ID: 36964987
    [Abstract] [Full Text] [Related]

  • 37. [Fire resistance of bark of 11 tree species].
    Wang MX, Shan YL, Yin SN, Ji X, Wang YJ, Yuan BH.
    Ying Yong Sheng Tai Xue Bao; 2020 Jan 01; 31(1):65-71. PubMed ID: 31957381
    [Abstract] [Full Text] [Related]

  • 38. Fire and mice: seed predation moderates fire's influence on conifer recruitment.
    Zwolak R, Pearson DE, Ortega YK, Crone EE.
    Ecology; 2010 Apr 01; 91(4):1124-31. PubMed ID: 20462126
    [Abstract] [Full Text] [Related]

  • 39. Disease and fire interact to influence transitions between savanna-forest ecosystems over a multi-decadal experiment.
    Pellegrini AFA, Hein AM, Cavender-Bares J, Montgomery RA, Staver AC, Silla F, Hobbie SE, Reich PB.
    Ecol Lett; 2021 May 01; 24(5):1007-1017. PubMed ID: 33694319
    [Abstract] [Full Text] [Related]

  • 40. Recent bark beetle outbreaks influence wildfire severity in mixed-conifer forests of the Sierra Nevada, California, USA.
    Wayman RB, Safford HD.
    Ecol Appl; 2021 Apr 01; 31(3):e02287. PubMed ID: 33426715
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.