These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


226 related items for PubMed ID: 36347371

  • 1. Simple and fast colorimetric detection of lipopolysaccharide based on aptamer and SYBR Green I mediated aggregation of gold nanoparticles.
    Jiang J, Huang B, Li N, An C, Sun C, Shen Y, Gooneratne R, Cui H, Zhan S, Wang Y.
    Int J Biol Macromol; 2022 Dec 31; 223(Pt A):231-239. PubMed ID: 36347371
    [Abstract] [Full Text] [Related]

  • 2. A label-free hairpin aptamer probe for colorimetric detection of adenosine triphosphate based on the anti-aggregation of gold nanoparticles.
    Sang F, Zhang X, Liu J, Yin S, Zhang Z.
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun 15; 217():122-127. PubMed ID: 30928837
    [Abstract] [Full Text] [Related]

  • 3. A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles.
    Mao Y, Fan T, Gysbers R, Tan Y, Liu F, Lin S, Jiang Y.
    Talanta; 2017 Jun 01; 168():279-285. PubMed ID: 28391854
    [Abstract] [Full Text] [Related]

  • 4. Colorimetric detection and typing of E. coli lipopolysaccharides based on a dual aptamer-functionalized gold nanoparticle probe.
    Zhu L, Li S, Shao X, Feng Y, Xie P, Luo Y, Huang K, Xu W.
    Mikrochim Acta; 2019 Jan 14; 186(2):111. PubMed ID: 30637507
    [Abstract] [Full Text] [Related]

  • 5. Target-induced gold nanoparticles colorimetric sensing coupled with aptamer for rapid and high-sensitivity detecting kanamycin.
    Xu R, Cheng Y, Qi X, Li X, Zhang Z, Chen L, Sun T, Gao Z, Zhu M.
    Anal Chim Acta; 2022 Oct 16; 1230():340377. PubMed ID: 36192060
    [Abstract] [Full Text] [Related]

  • 6. Ultrasensitive colorimetric detection of amoxicillin based on Tris-HCl-induced aggregation of gold nanoparticles.
    Nguyen DK, Jang CH.
    Anal Biochem; 2022 May 15; 645():114634. PubMed ID: 35271807
    [Abstract] [Full Text] [Related]

  • 7. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles.
    António M, Ferreira R, Vitorino R, Daniel-da-Silva AL.
    Talanta; 2020 Jul 01; 214():120868. PubMed ID: 32278414
    [Abstract] [Full Text] [Related]

  • 8. Naked-eye detection of potassium ions in a novel gold nanoparticle aggregation-based aptasensor.
    Naderi M, Hosseini M, Ganjali MR.
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Apr 15; 195():75-83. PubMed ID: 29414585
    [Abstract] [Full Text] [Related]

  • 9. Colorimetric theophylline aggregation assay using an RNA aptamer and non-crosslinking gold nanoparticles.
    Ma X, Guo Z, Mao Z, Tang Y, Miao P.
    Mikrochim Acta; 2017 Dec 07; 185(1):33. PubMed ID: 29594625
    [Abstract] [Full Text] [Related]

  • 10. Detection of Malachite Green using a colorimetric aptasensor based on the inhibition of the peroxidase-like activity of gold nanoparticles by cetyltrimethylammonium ions.
    Zhao C, Hong CY, Lin ZZ, Chen XM, Huang ZY.
    Mikrochim Acta; 2019 May 02; 186(5):322. PubMed ID: 31049692
    [Abstract] [Full Text] [Related]

  • 11. Novel colorimetric aptasensor based on unmodified gold nanoparticle and ssDNA for rapid and sensitive detection of T-2 toxin.
    Zhang W, Wang Y, Nan M, Li Y, Yun J, Wang Y, Bi Y.
    Food Chem; 2021 Jun 30; 348():129128. PubMed ID: 33516992
    [Abstract] [Full Text] [Related]

  • 12. Cocaine detection using aptamer and molybdenum disulfide-gold nanoparticle-based sensors.
    Gao L, Xiang W, Deng Z, Shi K, Wang H, Shi H.
    Nanomedicine (Lond); 2020 Feb 30; 15(4):325-335. PubMed ID: 31976806
    [Abstract] [Full Text] [Related]

  • 13. Aptamer--nanoparticle-based chemiluminescence for p53 protein.
    Shwetha N, Selvakumar LS, Thakur MS.
    Anal Biochem; 2013 Oct 01; 441(1):73-9. PubMed ID: 23816877
    [Abstract] [Full Text] [Related]

  • 14. Aptamer-based Colorimetric Biosensing of Ochratoxin A in Fortified White Grape Wine Sample Using Unmodified Gold Nanoparticles.
    Yin X, Wang S, Liu X, He C, Tang Y, Li Q, Liu J, Su H, Tan T, Dong Y.
    Anal Sci; 2017 Oct 01; 33(6):659-664. PubMed ID: 28603182
    [Abstract] [Full Text] [Related]

  • 15. A novel label-free colorimetric aptasensor for sensitive determination of PSA biomarker using gold nanoparticles and a cationic polymer in human serum.
    Shayesteh OH, Ghavami R.
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb 05; 226():117644. PubMed ID: 31614271
    [Abstract] [Full Text] [Related]

  • 16. A simple and sensitive AuNPs-based colorimetric aptasensor for specific detection of azlocillin.
    Xiao S, Lu J, Sun L, An S.
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr 15; 271():120924. PubMed ID: 35093821
    [Abstract] [Full Text] [Related]

  • 17. An aptamer based aggregation assay for the neonicotinoid insecticide acetamiprid using fluorescent upconversion nanoparticles and DNA functionalized gold nanoparticles.
    Yang L, Sun H, Wang X, Yao W, Zhang W, Jiang L.
    Mikrochim Acta; 2019 Apr 27; 186(5):308. PubMed ID: 31030275
    [Abstract] [Full Text] [Related]

  • 18. Highly Sensitive Aptamer-Based Colorimetric Detection of Melamine in Raw Milk with Cysteamine-Stabilized Gold Nanoparticles.
    Zheng H, Li Y, Xu J, Bie J, Liu X, Guo J, Luo Y, Shen F, Sun C, Yu Y.
    J Nanosci Nanotechnol; 2017 Feb 27; 17(2):853-61. PubMed ID: 29668219
    [Abstract] [Full Text] [Related]

  • 19. A colorimetric ATP assay based on the use of a magnesium(II)-dependent DNAzyme.
    Zhu S, Wang X, Jing C, Yin Y, Zhou N.
    Mikrochim Acta; 2019 Feb 15; 186(3):176. PubMed ID: 30771011
    [Abstract] [Full Text] [Related]

  • 20. An aptamer-based colorimetric lead(II) assay based on the use of gold nanoparticles modified with dsDNA and exonuclease I.
    Shahdordizadeh M, Yazdian-Robati R, Ansari N, Ramezani M, Abnous K, Taghdisi SM.
    Mikrochim Acta; 2018 Feb 01; 185(2):151. PubMed ID: 29594698
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.