These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


153 related items for PubMed ID: 36364329

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. [Expression, purification and characterization of a novel bis (hydroxyethyl) terephthalate hydrolase from Hydrogenobacter thermophilus].
    Chen Y, Gao J, Zhao Y, Wang H, Han X, Zhang J, Gu Q, Hou Y, Liu W.
    Sheng Wu Gong Cheng Xue Bao; 2023 May 25; 39(5):2015-2026. PubMed ID: 37212228
    [Abstract] [Full Text] [Related]

  • 24. Two-Step Chemo-Microbial Degradation of Post-Consumer Polyethylene Terephthalate (PET) Plastic Enabled by a Biomass-Waste Catalyst.
    Shingwekar D, Laster H, Kemp H, Mellies JL.
    Bioengineering (Basel); 2023 Oct 26; 10(11):. PubMed ID: 38002377
    [Abstract] [Full Text] [Related]

  • 25. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica.
    Beneyton T, Thomas S, Griffiths AD, Nicaud JM, Drevelle A, Rossignol T.
    Microb Cell Fact; 2017 Jan 31; 16(1):18. PubMed ID: 28143479
    [Abstract] [Full Text] [Related]

  • 26. Environmental Consortium Containing Pseudomonas and Bacillus Species Synergistically Degrades Polyethylene Terephthalate Plastic.
    Roberts C, Edwards S, Vague M, León-Zayas R, Scheffer H, Chan G, Swartz NA, Mellies JL.
    mSphere; 2020 Dec 23; 5(6):. PubMed ID: 33361127
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica.
    Fickers P, Nicaud JM, Gaillardin C, Destain J, Thonart P.
    J Appl Microbiol; 2004 Dec 23; 96(4):742-9. PubMed ID: 15012812
    [Abstract] [Full Text] [Related]

  • 29. Yarrowia lipolytica and Lactobacillus paracasei Solid State Fermentation as a Valuable Biotechnological Tool for the Pork Lard and Okara's Biotransformation.
    Cotârleț M, Stănciuc N, Bahrim GE.
    Microorganisms; 2020 Jul 22; 8(8):. PubMed ID: 32708033
    [Abstract] [Full Text] [Related]

  • 30. Process strategies to improve biocatalytic depolymerization of post-consumer PET packages in bioreactors, and investigation on consumables cost reduction.
    Carniel A, Gomes ADC, Coelho MAZ, de Castro AM.
    Bioprocess Biosyst Eng; 2021 Mar 22; 44(3):507-516. PubMed ID: 33111179
    [Abstract] [Full Text] [Related]

  • 31. Influence of oxygen availability on the metabolism and morphology of Yarrowia lipolytica: insights into the impact of glucose levels on dimorphism.
    Timoumi A, Bideaux C, Guillouet SE, Allouche Y, Molina-Jouve C, Fillaudeau L, Gorret N.
    Appl Microbiol Biotechnol; 2017 Oct 22; 101(19):7317-7333. PubMed ID: 28879478
    [Abstract] [Full Text] [Related]

  • 32. A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol.
    Mirończuk AM, Rakicka M, Biegalska A, Rymowicz W, Dobrowolski A.
    Bioresour Technol; 2015 Dec 22; 198():445-55. PubMed ID: 26409857
    [Abstract] [Full Text] [Related]

  • 33. Fast Turbidimetric Assay for Analyzing the Enzymatic Hydrolysis of Polyethylene Terephthalate Model Substrates.
    Belisário-Ferrari MR, Wei R, Schneider T, Honak A, Zimmermann W.
    Biotechnol J; 2019 Apr 22; 14(4):e1800272. PubMed ID: 30430764
    [Abstract] [Full Text] [Related]

  • 34. Computational design of highly efficient thermostable MHET hydrolases and dual enzyme system for PET recycling.
    Zhang J, Wang H, Luo Z, Yang Z, Zhang Z, Wang P, Li M, Zhang Y, Feng Y, Lu D, Zhu Y.
    Commun Biol; 2023 Nov 09; 6(1):1135. PubMed ID: 37945666
    [Abstract] [Full Text] [Related]

  • 35. Optimization of medium composition and fermentation conditions for α-ketoglutaric acid production from biodiesel waste by Yarrowia lipolytica.
    Kamzolova SV, Morgunov IG.
    Appl Microbiol Biotechnol; 2020 Sep 09; 104(18):7979-7989. PubMed ID: 32749527
    [Abstract] [Full Text] [Related]

  • 36. Optimization of PET depolymerization for enhanced terephthalic acid recovery from commercial PET and post consumer PET-bottles via low-temperature alkaline hydrolysis.
    Teke S, Saud S, Bhattarai RM, Ali A, Nguyen L, Denra A, Nguyen DB, Mok YS.
    Chemosphere; 2024 Oct 09; 365():143391. PubMed ID: 39307467
    [Abstract] [Full Text] [Related]

  • 37. [Synthesis of L-lactate oxidaze in yeast Yarrowia lipolytica during submerged cultivation].
    Biryukova EN, Arinbasarova AY, Medentsev AG.
    Prikl Biokhim Mikrobiol; 2017 Oct 09; 53(2):213-8. PubMed ID: 29509375
    [Abstract] [Full Text] [Related]

  • 38. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
    Lu Y, Yang Q, Lin Z, Yang X.
    Microb Cell Fact; 2020 Feb 27; 19(1):49. PubMed ID: 32103761
    [Abstract] [Full Text] [Related]

  • 39. Recent Advances and Challenges in Enzymatic Depolymerization and Recycling of PET Wastes.
    Shi L, Zhu L.
    Chembiochem; 2024 Jan 15; 25(2):e202300578. PubMed ID: 37960968
    [Abstract] [Full Text] [Related]

  • 40. An efficient method for production of kynurenic acid by Yarrowia lipolytica.
    Wróbel-Kwiatkowska M, Turski W, Kocki T, Rakicka-Pustułka M, Rymowicz W.
    Yeast; 2020 Sep 15; 37(9-10):541-547. PubMed ID: 32331000
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.