These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
193 related items for PubMed ID: 36364415
1. Green Extracellular Synthesis of Silver Nanoparticles by Pseudomonas alloputida, Their Growth and Biofilm-Formation Inhibitory Activities and Synergic Behavior with Three Classical Antibiotics. Pernas-Pleite C, Conejo-Martínez AM, Marín I, Abad JP. Molecules; 2022 Nov 05; 27(21):. PubMed ID: 36364415 [Abstract] [Full Text] [Related]
2. Microalga Broths Synthesize Antibacterial and Non-Cytotoxic Silver Nanoparticles Showing Synergy with Antibiotics and Bacterial ROS Induction and Can Be Reused for Successive AgNP Batches. Pernas-Pleite C, Conejo-Martínez AM, Fernández Freire P, Hazen MJ, Marín I, Abad JP. Int J Mol Sci; 2023 Nov 10; 24(22):. PubMed ID: 38003373 [Abstract] [Full Text] [Related]
4. Green synthesized silver nanoparticles from Phoenix dactylifera synergistically interact with bioactive extract of Punica granatum against bacterial virulence and biofilm development. Samreen, Ahmad I, Khan SA, Naseer A, Nazir A. Microb Pathog; 2024 Jul 10; 192():106708. PubMed ID: 38782213 [Abstract] [Full Text] [Related]
5. Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. Wypij M, Czarnecka J, Świecimska M, Dahm H, Rai M, Golinska P. World J Microbiol Biotechnol; 2018 Jan 05; 34(2):23. PubMed ID: 29305718 [Abstract] [Full Text] [Related]
6. Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Singh P, Pandit S, Jers C, Joshi AS, Garnæs J, Mijakovic I. Sci Rep; 2021 Jun 16; 11(1):12619. PubMed ID: 34135368 [Abstract] [Full Text] [Related]
7. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Singh H, Du J, Singh P, Yi TH. Artif Cells Nanomed Biotechnol; 2018 Sep 16; 46(6):1163-1170. PubMed ID: 28784039 [Abstract] [Full Text] [Related]
8. Study of silver nanoparticles synthesized by acidophilic strain of Actinobacteria isolated from the of Picea sitchensis forest soil. Railean-Plugaru V, Pomastowski P, Wypij M, Szultka-Mlynska M, Rafinska K, Golinska P, Dahm H, Buszewski B. J Appl Microbiol; 2016 May 16; 120(5):1250-63. PubMed ID: 26864807 [Abstract] [Full Text] [Related]
9. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. Golińska P, Wypij M, Rathod D, Tikar S, Dahm H, Rai M. J Basic Microbiol; 2016 May 16; 56(5):541-56. PubMed ID: 27151174 [Abstract] [Full Text] [Related]
10. Biogenic nanosilver bearing antimicrobial and antibiofilm activities and its potential for application in agriculture and industry. Trzcińska-Wencel J, Wypij M, Rai M, Golińska P. Front Microbiol; 2023 May 16; 14():1125685. PubMed ID: 36891391 [Abstract] [Full Text] [Related]
11. Bioengineered phytomolecules-capped silver nanoparticles using Carissa carandas leaf extract to embed on to urinary catheter to combat UTI pathogens. Rahuman HBH, Dhandapani R, Palanivel V, Thangavelu S, Paramasivam R, Muthupandian S. PLoS One; 2021 May 16; 16(9):e0256748. PubMed ID: 34473763 [Abstract] [Full Text] [Related]
12. Green synthesis of silver nanoparticles from peel extract of Chrysophyllum albidum fruit and their antimicrobial synergistic potentials and biofilm inhibition properties. Ankudze B, Neglo D. Biometals; 2023 Aug 16; 36(4):865-876. PubMed ID: 36586061 [Abstract] [Full Text] [Related]
13. Biosynthesis of Silver Nanoparticles Using the Biofilm Supernatant of Pseudomonas aeruginosa PA75 and Evaluation of Their Antibacterial, Antibiofilm, and Antitumor Activities. Xia F, Tao X, Wang H, Shui J, Min C, Xia Y, Li J, Tang M, Liu Z, Hu Y, Luo H, Zou M. Int J Nanomedicine; 2023 Aug 16; 18():2485-2502. PubMed ID: 37192897 [Abstract] [Full Text] [Related]
16. Inhibition of microbial growth by silver nanoparticles synthesized from Fraxinus xanthoxyloides leaf extract. Rafiq A, Zahid K, Qadir A, Khan MN, Khalid ZM, Ali N. J Appl Microbiol; 2021 Jul 16; 131(1):124-134. PubMed ID: 33251642 [Abstract] [Full Text] [Related]
17. Silver nanoparticles synthesis using Wedelia urticifolia (Blume) DC. flower extract: Characterization and antibacterial activity evaluation. Rather MY, Shincy M, Sundarapandian S. Microsc Res Tech; 2020 Sep 16; 83(9):1085-1094. PubMed ID: 32306505 [Abstract] [Full Text] [Related]
18. Green Synthesis and Evaluation of Lepidium didymum-mediated Silver Nanoparticles for in vitro Antibacterial Activity and Wound Healing in the Animal Model. Deeba F, Parveen S, Rashid Z, Aleem A, Raza H. J Oleo Sci; 2023 Mar 30; 72(4):429-439. PubMed ID: 36908177 [Abstract] [Full Text] [Related]
19. Green synthesis of silver nanoparticles employing hamdard joshanda extract: putative antimicrobial potential against gram positive and gram negative bacteria. Firdaus N, Altaf I, Iqubal Z, Sherwani OAK, Khan S, Kashif M, Kumar B, Owais M. Biometals; 2024 Apr 30; 37(2):389-403. PubMed ID: 38055071 [Abstract] [Full Text] [Related]
20. Mentha longifolia assisted nanostructures: An approach to obliterate microbial biofilms. Kazmi MB, Almutairi HH, Andleeb A, Jabeen R, Mustafa G, Habiba UE, Kazmi SA, Naz F, Qammar N. PLoS One; 2024 Apr 30; 19(7):e0303521. PubMed ID: 38985793 [Abstract] [Full Text] [Related] Page: [Next] [New Search]