These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies. Koh JEW, Acharya UR, Hagiwara Y, Raghavendra U, Tan JH, Sree SV, Bhandary SV, Rao AK, Sivaprasad S, Chua KC, Laude A, Tong L. Comput Biol Med; 2017 May 01; 84():89-97. PubMed ID: 28351716 [Abstract] [Full Text] [Related]
7. Detection of retinopathy disease using morphological gradient and segmentation approaches in fundus images. Toğaçar M. Comput Methods Programs Biomed; 2022 Feb 01; 214():106579. PubMed ID: 34896689 [Abstract] [Full Text] [Related]
9. Computer-aided diagnosis based on enhancement of degraded fundus photographs. Jin K, Zhou M, Wang S, Lou L, Xu Y, Ye J, Qian D. Acta Ophthalmol; 2018 May 01; 96(3):e320-e326. PubMed ID: 29090844 [Abstract] [Full Text] [Related]
11. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME). Noor-Ul-Huda M, Tehsin S, Ahmed S, Niazi FAK, Murtaza Z. Biomed Tech (Berl); 2019 May 27; 64(3):297-307. PubMed ID: 30055096 [Abstract] [Full Text] [Related]
17. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Asiri N, Hussain M, Al Adel F, Alzaidi N. Artif Intell Med; 2019 Aug 27; 99():101701. PubMed ID: 31606116 [Abstract] [Full Text] [Related]
18. Construction of benchmark retinal image database for diabetic retinopathy analysis. Kaur J, Mittal D. Proc Inst Mech Eng H; 2020 Sep 27; 234(9):1036-1048. PubMed ID: 32605477 [Abstract] [Full Text] [Related]
19. An Automated System for the Detection and Classification of Retinal Changes Due to Red Lesions in Longitudinal Fundus Images. Adal KM, van Etten PG, Martinez JP, Rouwen KW, Vermeer KA, van Vliet LJ. IEEE Trans Biomed Eng; 2018 Jun 27; 65(6):1382-1390. PubMed ID: 28922110 [Abstract] [Full Text] [Related]
20. Ensemble of deep convolutional neural networks is more accurate and reliable than board-certified ophthalmologists at detecting multiple diseases in retinal fundus photographs. Pandey PU, Ballios BG, Christakis PG, Kaplan AJ, Mathew DJ, Ong Tone S, Wan MJ, Micieli JA, Wong JCY. Br J Ophthalmol; 2024 Feb 21; 108(3):417-423. PubMed ID: 36720585 [Abstract] [Full Text] [Related] Page: [Next] [New Search]