These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 36372829
1. Plants with extrafloral nectaries share indirect defenses and shape the local arboreal ant community. Moura RF, Del-Claro K. Oecologia; 2023 Jan; 201(1):73-82. PubMed ID: 36372829 [Abstract] [Full Text] [Related]
2. Temporal Variation in the Abundance and Richness of Foliage-Dwelling Ants Mediated by Extrafloral Nectar. Belchior C, Sendoya SF, Del-Claro K. PLoS One; 2016 Jan; 11(7):e0158283. PubMed ID: 27438722 [Abstract] [Full Text] [Related]
3. Time course of inducibility of indirect responses in an ant-defended plant. Calixto ES, Del-Claro K, Lange D, Bronstein J. Ecology; 2023 May; 104(5):e4029. PubMed ID: 36912135 [Abstract] [Full Text] [Related]
4. Dear neighbor: Trees with extrafloral nectaries facilitate defense and growth of adjacent undefended trees. Staab M, Pietsch S, Yan H, Blüthgen N, Cheng A, Li Y, Zhang N, Ma K, Liu X. Ecology; 2023 Jul; 104(7):e4057. PubMed ID: 37078562 [Abstract] [Full Text] [Related]
5. Extrafloral nectaries have a limited effect on the structure of arboreal ant communities in a Neotropical savanna. Camarota F, Powell S, Vasconcelos HL, Priest G, Marquis RJ. Ecology; 2015 Jan; 96(1):231-40. PubMed ID: 26236908 [Abstract] [Full Text] [Related]
6. Variation in Extrafloral Nectary Productivity Influences the Ant Foraging. Lange D, Calixto ES, Del-Claro K. PLoS One; 2017 Jan; 12(1):e0169492. PubMed ID: 28046069 [Abstract] [Full Text] [Related]
7. Induction and relaxation of extrafloral nectaries in response to simulated herbivory in young Mallotus japonicus plants. Yamawo A, Suzuki N. J Plant Res; 2018 Mar; 131(2):255-260. PubMed ID: 29090369 [Abstract] [Full Text] [Related]
8. Non-additive benefit or cost? Disentangling the indirect effects that occur when plants bearing extrafloral nectaries and honeydew-producing insects share exotic ant mutualists. Savage AM, Rudgers JA. Ann Bot; 2013 Jun; 111(6):1295-307. PubMed ID: 23609021 [Abstract] [Full Text] [Related]
9. Diversity and evolution of a trait mediating ant-plant interactions: insights from extrafloral nectaries in Senna (Leguminosae). Marazzi B, Conti E, Sanderson MJ, McMahon MM, Bronstein JL. Ann Bot; 2013 Jun; 111(6):1263-75. PubMed ID: 23104672 [Abstract] [Full Text] [Related]
10. Extrafloral nectary-bearing plant Mallotus japonicus uses different types of extrafloral nectaries to establish effective defense by ants. Yamawo A, Suzuki N, Tagawa J. J Plant Res; 2019 Jul; 132(4):499-507. PubMed ID: 31228016 [Abstract] [Full Text] [Related]
11. Plant species with larger extrafloral nectaries produce better quality nectar when needed and interact with the best ant partners. Alencar CLDS, Nogueira A, Vicente RE, Coutinho ÍAC. J Exp Bot; 2023 Aug 17; 74(15):4613-4627. PubMed ID: 37115640 [Abstract] [Full Text] [Related]
12. Ants at Plant Wounds: A Little-Known Trophic Interaction with Evolutionary Implications for Ant-Plant Interactions. Staab M, Fornoff F, Klein AM, Blüthgen N. Am Nat; 2017 Sep 17; 190(3):442-450. PubMed ID: 28829637 [Abstract] [Full Text] [Related]
13. Evolution of extrafloral nectaries: adaptive process and selective regime changes from forest to savanna. Nogueira A, Rey PJ, Lohmann LG. J Evol Biol; 2012 Nov 17; 25(11):2325-40. PubMed ID: 23013544 [Abstract] [Full Text] [Related]
14. Extranuptial nectaries in flowers: ants increase the reproductive success of the ant-plant Miconia tococa (Melastomataceae). Belan HC, Barônio GJ, Kuster VC, Oliveira DC, Vasconcelos HL. Plant Biol (Stuttg); 2020 Sep 17; 22(5):917-923. PubMed ID: 32485039 [Abstract] [Full Text] [Related]
15. Variation in the outcomes of an ant-plant system: fire and leaf fungus infection reduce benefits to plants with extrafloral nectaries. Pires LP, Del-Claro K. J Insect Sci; 2014 Sep 17; 14():84. PubMed ID: 25368040 [Abstract] [Full Text] [Related]
16. Understanding ontogenetic trajectories of indirect defence: ecological and anatomical constraints in the production of extrafloral nectaries. Villamil N, Márquez-Guzmán J, Boege K. Ann Bot; 2013 Aug 17; 112(4):701-9. PubMed ID: 23380241 [Abstract] [Full Text] [Related]
17. Influence of neighboring plants on the dynamics of an ant-acacia protection mutualism. Palmer TM, Riginos C, Damiani RE, Morgan N, Lemboi JS, Lengingiro J, Ruiz-Guajardo JC, Pringle RM. Ecology; 2017 Dec 17; 98(12):3034-3043. PubMed ID: 28875567 [Abstract] [Full Text] [Related]
18. Long-term temporal variation in the organization of an ant-plant network. Díaz-Castelazo C, Sánchez-Galván IR, Guimarães PR, Raimundo RL, Rico-Gray V. Ann Bot; 2013 Jun 17; 111(6):1285-93. PubMed ID: 23704116 [Abstract] [Full Text] [Related]
19. Testing the Distraction Hypothesis: Do extrafloral nectaries reduce ant-pollinator conflict? Villamil N, Boege K, Stone GN. J Ecol; 2019 May 17; 107(3):1377-1391. PubMed ID: 31217634 [Abstract] [Full Text] [Related]
20. Decreasing water availability across the globe improves the effectiveness of protective ant-plant mutualisms: a meta-analysis. Leal LC, Peixoto PEC. Biol Rev Camb Philos Soc; 2017 Aug 17; 92(3):1785-1794. PubMed ID: 27791332 [Abstract] [Full Text] [Related] Page: [Next] [New Search]