These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
135 related items for PubMed ID: 36374868
1. Energy Flow and Functional Behavior of Individual Muscles at Different Speeds During Human Walking. Hu Z, Ren L, Wei G, Qian Z, Liang W, Chen W, Lu X, Ren L, Wang K. IEEE Trans Neural Syst Rehabil Eng; 2023; 31():294-303. PubMed ID: 36374868 [Abstract] [Full Text] [Related]
2. Contributions to the understanding of gait control. Simonsen EB. Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [Abstract] [Full Text] [Related]
3. Lower-limb muscle function in healthy young and older adults across a range of walking speeds. Lim YP, Lin YC, Pandy MG. Gait Posture; 2022 May; 94():124-130. PubMed ID: 35305479 [Abstract] [Full Text] [Related]
4. Société de Biomécanique young investigator award 2022: Effects of applying functional electrical stimulation to ankle plantarflexor muscles on forward propulsion during walking in young healthy adults. Aout T, Begon M, Peyrot N, Caderby T. J Biomech; 2024 May; 168():112114. PubMed ID: 38677030 [Abstract] [Full Text] [Related]
5. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. Neptune RR, Kautz SA, Zajac FE. J Biomech; 2001 Nov; 34(11):1387-98. PubMed ID: 11672713 [Abstract] [Full Text] [Related]
6. Muscle force distribution of the lower limbs during walking in diabetic individuals with and without polyneuropathy. Gomes AA, Ackermann M, Ferreira JP, Orselli MIV, Sacco ICN. J Neuroeng Rehabil; 2017 Nov 09; 14(1):111. PubMed ID: 29121964 [Abstract] [Full Text] [Related]
7. Electromyographic patterns of tibialis posterior and related muscles when walking at different speeds. Murley GS, Menz HB, Landorf KB. Gait Posture; 2014 Apr 09; 39(4):1080-5. PubMed ID: 24618372 [Abstract] [Full Text] [Related]
8. Speed-Related Energy Flow and Joint Function Change During Human Walking. Hu Z, Ren L, Hu D, Gao Y, Wei G, Qian Z, Wang K. Front Bioeng Biotechnol; 2021 Apr 09; 9():666428. PubMed ID: 34136472 [Abstract] [Full Text] [Related]
9. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. Neptune RR, Sasaki K. J Exp Biol; 2005 Mar 09; 208(Pt 5):799-808. PubMed ID: 15755878 [Abstract] [Full Text] [Related]
10. The modulation of forward propulsion, vertical support, and center of pressure by the plantarflexors during human walking. Francis CA, Lenz AL, Lenhart RL, Thelen DG. Gait Posture; 2013 Sep 09; 38(4):993-7. PubMed ID: 23787149 [Abstract] [Full Text] [Related]
11. Feasibility evaluation of a dual-mode ankle exoskeleton to assist and restore community ambulation in older adults. Fang Y, Harshe K, Franz JR, Lerner ZF. Wearable Technol; 2022 Sep 09; 3():. PubMed ID: 36404993 [Abstract] [Full Text] [Related]
12. In vivo fascicle behavior of the flexor hallucis longus muscle at different walking speeds. Péter A, Hegyi A, Finni T, Cronin NJ. Scand J Med Sci Sports; 2017 Dec 09; 27(12):1716-1723. PubMed ID: 28156022 [Abstract] [Full Text] [Related]
13. Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking. Peterson CL, Hall AL, Kautz SA, Neptune RR. J Biomech; 2010 Aug 26; 43(12):2348-55. PubMed ID: 20466377 [Abstract] [Full Text] [Related]
14. Does muscle coactivation influence joint excursions during gait in children with and without hemiplegic cerebral palsy? Relationship between muscle coactivation and joint kinematics. Gross R, Leboeuf F, Hardouin JB, Perrouin-Verbe B, Brochard S, Rémy-Néris O. Clin Biomech (Bristol); 2015 Dec 26; 30(10):1088-93. PubMed ID: 26377949 [Abstract] [Full Text] [Related]
15. The effect of walking speed on muscle function and mechanical energetics. Neptune RR, Sasaki K, Kautz SA. Gait Posture; 2008 Jul 26; 28(1):135-43. PubMed ID: 18158246 [Abstract] [Full Text] [Related]
16. Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions. Prilutsky BI, Gregor RJ. J Exp Biol; 2001 Jul 26; 204(Pt 13):2277-87. PubMed ID: 11507111 [Abstract] [Full Text] [Related]
17. Compensatory strategies during walking in response to excessive muscle co-contraction at the ankle joint. Wang R, Gutierrez-Farewik EM. Gait Posture; 2014 Mar 26; 39(3):926-32. PubMed ID: 24374063 [Abstract] [Full Text] [Related]
18. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. Dorn TW, Schache AG, Pandy MG. J Exp Biol; 2012 Jun 01; 215(Pt 11):1944-56. PubMed ID: 22573774 [Abstract] [Full Text] [Related]
19. Does human foot anthropometry relate to plantar flexor fascicle mechanics and metabolic energy cost across various walking speeds? Papachatzis N, Ray SF, Takahashi KZ. J Exp Biol; 2023 May 15; 226(10):. PubMed ID: 37092255 [Abstract] [Full Text] [Related]
20. Adaptive control for backward quadrupedal walking VI. metatarsophalangeal joint dynamics and motor patterns of digit muscles. Trank TV, Smith JL. J Neurophysiol; 1996 Feb 15; 75(2):678-9. PubMed ID: 8714644 [Abstract] [Full Text] [Related] Page: [Next] [New Search]