These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
189 related items for PubMed ID: 36380715
1. Merging Passivation in Synthesis Enabling the Lowest Open-Circuit Voltage Loss for PbS Quantum Dot Solar Cells. Liu Y, Wu H, Shi G, Li Y, Gao Y, Fang S, Tang H, Chen W, Ma T, Khan I, Wang K, Wang C, Li X, Shen Q, Liu Z, Ma W. Adv Mater; 2023 Feb; 35(5):e2207293. PubMed ID: 36380715 [Abstract] [Full Text] [Related]
3. In situ synergistic halogen passivation of semiconducting PbS quantum dot inks for efficient photovoltaics. Ding X, Wen X, Kawata Y, Liu Y, Shi G, Ghazi RB, Sun X, Zhu Y, Wu H, Gao H, Shen Q, Liu Z, Ma W. Nanoscale; 2024 Mar 07; 16(10):5115-5122. PubMed ID: 38369889 [Abstract] [Full Text] [Related]
6. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. Ma Y, Zhang H, Zhang Y, Hu R, Jiang M, Zhang R, Lv H, Tian J, Chu L, Zhang J, Xue Q, Yip HL, Xia R, Li X, Huang W. ACS Appl Mater Interfaces; 2019 Jan 23; 11(3):3044-3052. PubMed ID: 30585492 [Abstract] [Full Text] [Related]
7. Open-Circuit Voltage Loss in Lead Chalcogenide Quantum Dot Solar Cells. Liu J, Xian K, Ye L, Zhou Z. Adv Mater; 2021 Jul 23; 33(29):e2008115. PubMed ID: 34085736 [Abstract] [Full Text] [Related]
11. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study. Wang H, Wang Y, He B, Li W, Sulaman M, Xu J, Yang S, Tang Y, Zou B. ACS Appl Mater Interfaces; 2016 Jul 20; 8(28):18526-33. PubMed ID: 27176547 [Abstract] [Full Text] [Related]
16. Charge Transport Layer Engineering toward Efficient and Stable Colloidal Quantum Dot Solar Cells. Zhang Y, Liu Z, Ma W. J Phys Chem Lett; 2023 Jul 20; 14(28):6402-6413. PubMed ID: 37431977 [Abstract] [Full Text] [Related]
17. A Small-Molecule "Charge Driver" enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13. Xue J, Wang R, Chen L, Nuryyeva S, Han TH, Huang T, Tan S, Zhu J, Wang M, Wang ZK, Zhang C, Lee JW, Yang Y. Adv Mater; 2019 Sep 20; 31(37):e1900111. PubMed ID: 31343086 [Abstract] [Full Text] [Related]
18. Reducing Interface Recombination through Mixed Nanocrystal Interlayers in PbS Quantum Dot Solar Cells. Pradhan S, Stavrinadis A, Gupta S, Konstantatos G. ACS Appl Mater Interfaces; 2017 Aug 23; 9(33):27390-27395. PubMed ID: 28787128 [Abstract] [Full Text] [Related]
19. Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling. Yang Z, Janmohamed A, Lan X, García de Arquer FP, Voznyy O, Yassitepe E, Kim GH, Ning Z, Gong X, Comin R, Sargent EH. Nano Lett; 2015 Nov 11; 15(11):7539-43. PubMed ID: 26439147 [Abstract] [Full Text] [Related]
20. Novel Hybrid Ligands for Passivating PbS Colloidal Quantum Dots to Enhance the Performance of Solar Cells. Yang Y, Zhao B, Gao Y, Liu H, Tian Y, Qin D, Wu H, Huang W, Hou L. Nanomicro Lett; 2015 Nov 11; 7(4):325-331. PubMed ID: 30464978 [Abstract] [Full Text] [Related] Page: [Next] [New Search]