These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
177 related items for PubMed ID: 36383497
1. Temporal-Adaptive Graph Convolutional Network for Automated Identification of Major Depressive Disorder Using Resting-State fMRI. Yao D, Sui J, Yang E, Yap PT, Shen D, Liu M. Mach Learn Med Imaging; 2020 Oct; 12436():1-10. PubMed ID: 36383497 [Abstract] [Full Text] [Related]
2. Multi-view graph network learning framework for identification of major depressive disorder. Zhang M, Long D, Chen Z, Fang C, Li Y, Huang P, Chen F, Sun H. Comput Biol Med; 2023 Nov; 166():107478. PubMed ID: 37776730 [Abstract] [Full Text] [Related]
3. Dynamic functional connectivity analysis with temporal convolutional network for attention deficit/hyperactivity disorder identification. Wang M, Zhu L, Li X, Pan Y, Li L. Front Neurosci; 2023 Nov; 17():1322967. PubMed ID: 38148943 [Abstract] [Full Text] [Related]
4. Graph Autoencoders for Embedding Learning in Brain Networks and Major Depressive Disorder Identification. Noman F, Ting CM, Kang H, Phan RC, Ombao H. IEEE J Biomed Health Inform; 2024 Mar; 28(3):1644-1655. PubMed ID: 38194405 [Abstract] [Full Text] [Related]
5. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder. Pan J, Lin H, Dong Y, Wang Y, Ji Y. Comput Biol Med; 2022 Sep; 148():105823. PubMed ID: 35872410 [Abstract] [Full Text] [Related]
6. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease. Jie B, Liu M, Shen D. Med Image Anal; 2018 Jul; 47():81-94. PubMed ID: 29702414 [Abstract] [Full Text] [Related]
7. Graph-Based Conditional Generative Adversarial Networks for Major Depressive Disorder Diagnosis With Synthetic Functional Brain Network Generation. Oh JH, Lee DJ, Ji CH, Shin DH, Han JW, Son YH, Kam TE. IEEE J Biomed Health Inform; 2024 Mar; 28(3):1504-1515. PubMed ID: 38064332 [Abstract] [Full Text] [Related]
12. Effective hyper-connectivity network construction and learning: Application to major depressive disorder identification. Liu J, Yang W, Ma Y, Dong Q, Li Y, Hu B, DIRECT Consortium. Comput Biol Med; 2024 Mar; 171():108069. PubMed ID: 38394798 [Abstract] [Full Text] [Related]
15. Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI. Wang M, Huang J, Liu M, Zhang D. Med Image Anal; 2021 Jul; 71():102063. PubMed ID: 33910109 [Abstract] [Full Text] [Related]
16. Identifying resting-state effective connectivity abnormalities in drug-naïve major depressive disorder diagnosis via graph convolutional networks. Jun E, Na KS, Kang W, Lee J, Suk HI, Ham BJ. Hum Brain Mapp; 2020 Dec; 41(17):4997-5014. PubMed ID: 32813309 [Abstract] [Full Text] [Related]
19. Classification of recurrent major depressive disorder using a new time series feature extraction method through multisite rs-fMRI data. Dai P, Lu D, Shi Y, Zhou Y, Xiong T, Zhou X, Chen Z, Zou B, Tang H, Huang Z, Liao S, REST-meta-MDD Consortium. J Affect Disord; 2023 Oct 15; 339():511-519. PubMed ID: 37467800 [Abstract] [Full Text] [Related]