These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


462 related items for PubMed ID: 36385984

  • 1. Semiconductor-metal-semiconductor TiO2@Au/g-C3N4 interfacial heterojunction for high performance Z-scheme photocatalyst.
    Hong T, Anwer S, Wu J, Deng C, Qian H.
    Front Chem; 2022; 10():1050046. PubMed ID: 36385984
    [Abstract] [Full Text] [Related]

  • 2. A visible light active, carbon-nitrogen-sulfur co-doped TiO2/g-C3N4 Z-scheme heterojunction as an effective photocatalyst to remove dye pollutants.
    Huang Z, Jia S, Wei J, Shao Z.
    RSC Adv; 2021 Apr 30; 11(27):16747-16754. PubMed ID: 35479154
    [Abstract] [Full Text] [Related]

  • 3. Coupling Long-Range Facet Junction and Interfacial Heterojunction via Edge-Selective Deposition for High-Performance Z-Scheme Photocatalyst.
    Li X, Anwer S, Guan Q, Anjum DH, Palmisano G, Zheng L.
    Adv Sci (Weinh); 2022 Jun 30; 9(18):e2200346. PubMed ID: 35466563
    [Abstract] [Full Text] [Related]

  • 4. In situ synthesis of g-C3N4/TiO2 heterojunction by a concentrated absorption process for efficient photocatalytic degradation of tetracycline hydrochloride.
    Bi R, Liu J, Zhou C, Shen Y, Liu Z, Wang Z.
    Environ Sci Pollut Res Int; 2023 Apr 30; 30(19):55044-55056. PubMed ID: 36882657
    [Abstract] [Full Text] [Related]

  • 5. Construction of Chemically Bonded Interface of Organic/Inorganic g-C3N4/LDH Heterojunction for Z-Schematic Photocatalytic H2 Generation.
    Xia Y, Liang R, Yang MQ, Zhu S, Yan G.
    Nanomaterials (Basel); 2021 Oct 18; 11(10):. PubMed ID: 34685202
    [Abstract] [Full Text] [Related]

  • 6. 0D/2D Z-Scheme Heterojunctions of Bismuth Tantalate Quantum Dots/Ultrathin g-C3N4 Nanosheets for Highly Efficient Visible Light Photocatalytic Degradation of Antibiotics.
    Wang K, Zhang G, Li J, Li Y, Wu X.
    ACS Appl Mater Interfaces; 2017 Dec 20; 9(50):43704-43715. PubMed ID: 29172438
    [Abstract] [Full Text] [Related]

  • 7. Enhanced photocatalytic hydrogen evolution and ammonia sensitivity of double-heterojunction g-C3N4/TiO2/CuO.
    Dai L, Sun F, Fu P, Li H.
    RSC Adv; 2022 Apr 28; 12(21):13381-13392. PubMed ID: 35520123
    [Abstract] [Full Text] [Related]

  • 8. 2D/2D Phosphorus-Doped g-C3N4/Bi2WO6 Direct Z-Scheme Heterojunction Photocatalytic System for Tetracycline Hydrochloride (TC-HCl) Degradation.
    Yin X, Sun X, Li D, Xie W, Mao Y, Liu Z, Liu Z.
    Int J Environ Res Public Health; 2022 Nov 13; 19(22):. PubMed ID: 36429655
    [Abstract] [Full Text] [Related]

  • 9. Ag-Bridged Z-Scheme 2D/2D Bi5FeTi3O15/g-C3N4 Heterojunction for Enhanced Photocatalysis: Mediator-Induced Interfacial Charge Transfer and Mechanism Insights.
    Wang K, Li J, Zhang G.
    ACS Appl Mater Interfaces; 2019 Aug 07; 11(31):27686-27696. PubMed ID: 31282639
    [Abstract] [Full Text] [Related]

  • 10. Construction of g-C3N4/Ag/TiO2 Z-scheme photocatalyst and Its improved photocatalytic U(VI) reduction application in water.
    Liu Y, Yuan Y, Ni S, Liu J, Xie S, Liu Y.
    Water Sci Technol; 2022 May 07; 85(9):2639-2651. PubMed ID: 35576258
    [Abstract] [Full Text] [Related]

  • 11. Construction of g-C3N4 and FeWO4 Z-scheme photocatalyst: effect of contact ways on the photocatalytic performance.
    Wang C, Wang G, Zhang X, Dong X, Ma C, Zhang X, Ma H, Xue M.
    RSC Adv; 2018 May 17; 8(33):18419-18426. PubMed ID: 35541147
    [Abstract] [Full Text] [Related]

  • 12. Preparation and Application of a Novel S-Scheme Nanoheterojunction Photocatalyst (LaNi0.6Fe0.4O3/g-C3N4).
    Zhang K, Wang R, Zhong X, Jiang F.
    ACS Omega; 2024 Jul 02; 9(26):28422-28436. PubMed ID: 38973884
    [Abstract] [Full Text] [Related]

  • 13. A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure.
    Liu J, Cheng B, Yu J.
    Phys Chem Chem Phys; 2016 Nov 16; 18(45):31175-31183. PubMed ID: 27819105
    [Abstract] [Full Text] [Related]

  • 14. Molybdenum disulfide loading on a Z-scheme graphitic carbon nitride and lanthanum nickelate heterojunction for enhanced photocatalysis: Interfacial charge transfer and mechanistic insights.
    Bao J, Jiang X, Huang L, Quan W, Zhang C, Wang Y, Wang H, Zeng Y, Zhang W, Ma Y, Yu S, Hu X, Tian H.
    J Colloid Interface Sci; 2022 Apr 16; 611():684-694. PubMed ID: 34974228
    [Abstract] [Full Text] [Related]

  • 15. Graphitic Carbon Nitride/Zinc Oxide-Based Z-Scheme and S-Scheme Heterojunction Photocatalysts for the Photodegradation of Organic Pollutants.
    Panthi G, Park M.
    Int J Mol Sci; 2023 Oct 09; 24(19):. PubMed ID: 37834469
    [Abstract] [Full Text] [Related]

  • 16. Facile fabrication of direct solid-state Z-scheme g-C3N4/Fe2O3 heterojunction: a cost-effective photocatalyst with high efficiency for the degradation of aqueous organic pollutants.
    Wang J, Zuo X, Cai W, Sun J, Ge X, Zhao H.
    Dalton Trans; 2018 Nov 21; 47(43):15382-15390. PubMed ID: 30303508
    [Abstract] [Full Text] [Related]

  • 17. Enhanced photocatalytic degradation of organic contaminants over a CuO/g-C3N4 p-n heterojunction under visible light irradiation.
    Zhu L, Luo J, Dong G, Lu Y, Lai Y, Liu J, Chen G, Zhang Y.
    RSC Adv; 2021 Oct 08; 11(53):33373-33379. PubMed ID: 35497548
    [Abstract] [Full Text] [Related]

  • 18. Rational design direct Z-scheme BiOBr/g-C3N4 heterojunction with enhanced visible photocatalytic activity for organic pollutants elimination.
    Li H, Ma A, Zhang D, Gao Y, Dong Y.
    RSC Adv; 2020 Jan 24; 10(8):4681-4689. PubMed ID: 35495249
    [Abstract] [Full Text] [Related]

  • 19. Construction of MoO3 nanopaticles /g-C3N4 nanosheets 0D/2D heterojuntion photocatalysts for enhanced photocatalytic degradation of antibiotic pollutant.
    Liu L, Huang J, Yu H, Wan J, Liu L, Yi K, Zhang W, Zhang C.
    Chemosphere; 2021 Nov 24; 282():131049. PubMed ID: 34098307
    [Abstract] [Full Text] [Related]

  • 20. A Z-scheme photocatalyst for enhanced photocatalytic H2 evolution, constructed by growth of 2D plasmonic MoO3-x nanoplates onto 2D g-C3N4 nanosheets.
    Guo Y, Chang B, Wen T, Zhang S, Zeng M, Hu N, Su Y, Yang Z, Yang B.
    J Colloid Interface Sci; 2020 May 01; 567():213-223. PubMed ID: 32058171
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.