These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 36388608

  • 1. Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava.
    Juma BS, Mukami A, Mweu C, Ngugi MP, Mbinda W.
    Front Plant Sci; 2022; 13():1009860. PubMed ID: 36388608
    [Abstract] [Full Text] [Related]

  • 2. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D, Sayre R.
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [Abstract] [Full Text] [Related]

  • 3. CRISPR-Cas9-mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production.
    Gomez MA, Berkoff KC, Gill BK, Iavarone AT, Lieberman SE, Ma JM, Schultink A, Karavolias NG, Wyman SK, Chauhan RD, Taylor NJ, Staskawicz BJ, Cho MJ, Rokhsar DS, Lyons JB.
    Front Plant Sci; 2022 Nov; 13():1079254. PubMed ID: 37007603
    [Abstract] [Full Text] [Related]

  • 4. Efficient CRISPR/Cas9 Genome Editing of Phytoene desaturase in Cassava.
    Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ.
    Front Plant Sci; 2017 Nov; 8():1780. PubMed ID: 29093724
    [Abstract] [Full Text] [Related]

  • 5. Generation of cyanogen-free transgenic cassava.
    Siritunga D, Sayre RT.
    Planta; 2003 Jul; 217(3):367-73. PubMed ID: 14520563
    [Abstract] [Full Text] [Related]

  • 6. Over-expression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification.
    Siritunga D, Arias-Garzon D, White W, Sayre RT.
    Plant Biotechnol J; 2004 Jan; 2(1):37-43. PubMed ID: 17166141
    [Abstract] [Full Text] [Related]

  • 7. Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development.
    Zidenga T, Siritunga D, Sayre RT.
    Front Plant Sci; 2017 Jan; 8():220. PubMed ID: 28286506
    [Abstract] [Full Text] [Related]

  • 8. Cyanogenesis in cassava and its molecular manipulation for crop improvement.
    McMahon J, Sayre R, Zidenga T.
    J Exp Bot; 2022 Apr 05; 73(7):1853-1867. PubMed ID: 34905020
    [Abstract] [Full Text] [Related]

  • 9. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.
    Narayanan NN, Ihemere U, Ellery C, Sayre RT.
    PLoS One; 2011 Apr 05; 6(7):e21996. PubMed ID: 21799761
    [Abstract] [Full Text] [Related]

  • 10. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava.
    Luo S, Ma Q, Zhong Y, Jing J, Wei Z, Zhou W, Lu X, Tian Y, Zhang P.
    Plant Mol Biol; 2022 Mar 05; 108(4-5):429-442. PubMed ID: 34792751
    [Abstract] [Full Text] [Related]

  • 11. Transgenic approaches for cyanogen reduction in cassava.
    Siritunga D, Sayre R.
    J AOAC Int; 2007 Mar 05; 90(5):1450-5. PubMed ID: 17955993
    [Abstract] [Full Text] [Related]

  • 12. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat.
    Zhang S, Zhang R, Song G, Gao J, Li W, Han X, Chen M, Li Y, Li G.
    BMC Plant Biol; 2018 Nov 26; 18(1):302. PubMed ID: 30477421
    [Abstract] [Full Text] [Related]

  • 13. Use of CRISPR/Cas9 for Targeted Mutagenesis in Sorghum.
    Char SN, Lee H, Yang B.
    Curr Protoc Plant Biol; 2020 Jun 26; 5(2):e20112. PubMed ID: 32501639
    [Abstract] [Full Text] [Related]

  • 14. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes.
    Andersen MD, Busk PK, Svendsen I, Møller BL.
    J Biol Chem; 2000 Jan 21; 275(3):1966-75. PubMed ID: 10636899
    [Abstract] [Full Text] [Related]

  • 15. Cyanide Content of Cassava Food Products Available in Australia.
    Quinn AA, Myrans H, Gleadow RM.
    Foods; 2022 May 11; 11(10):. PubMed ID: 35626954
    [Abstract] [Full Text] [Related]

  • 16. Site-directed mutagenesis by biolistic transformation efficiently generates inheritable mutations in a targeted locus in soybean somatic embryos and transgene-free descendants in the T1 generation.
    Adachi K, Hirose A, Kanazashi Y, Hibara M, Hirata T, Mikami M, Endo M, Hirose S, Maruyama N, Ishimoto M, Abe J, Yamada T.
    Transgenic Res; 2021 Feb 11; 30(1):77-89. PubMed ID: 33386504
    [Abstract] [Full Text] [Related]

  • 17. CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max.L).
    Al Amin N, Ahmad N, Wu N, Pu X, Ma T, Du Y, Bo X, Wang N, Sharif R, Wang P.
    BMC Biotechnol; 2019 Jan 28; 19(1):9. PubMed ID: 30691438
    [Abstract] [Full Text] [Related]

  • 18. Heat-shock-inducible CRISPR/Cas9 system generates heritable mutations in rice.
    Nandy S, Pathak B, Zhao S, Srivastava V.
    Plant Direct; 2019 May 28; 3(5):e00145. PubMed ID: 31404128
    [Abstract] [Full Text] [Related]

  • 19. Potato Virus X Vector-Mediated DNA-Free Genome Editing in Plants.
    Ariga H, Toki S, Ishibashi K.
    Plant Cell Physiol; 2020 Dec 23; 61(11):1946-1953. PubMed ID: 32991731
    [Abstract] [Full Text] [Related]

  • 20. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice.
    Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J.
    Rice (N Y); 2014 Dec 23; 7(1):5. PubMed ID: 24920971
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.