These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


439 related items for PubMed ID: 36395337

  • 1. Solar Panel Technologies for Light-to-Chemical Conversion.
    Andrei V, Wang Q, Uekert T, Bhattacharjee S, Reisner E.
    Acc Chem Res; 2022 Dec 06; 55(23):3376-3386. PubMed ID: 36395337
    [Abstract] [Full Text] [Related]

  • 2. Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite-BiVO4 tandems.
    Andrei V, Reuillard B, Reisner E.
    Nat Mater; 2020 Feb 06; 19(2):189-194. PubMed ID: 31636423
    [Abstract] [Full Text] [Related]

  • 3. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A, Anderlund M, Johansson O, Lindblad P, Lomoth R, Polivka T, Ott S, Stensjö K, Styring S, Sundström V, Hammarström L.
    Acc Chem Res; 2009 Dec 21; 42(12):1899-909. PubMed ID: 19757805
    [Abstract] [Full Text] [Related]

  • 4. Recent advances in heterogeneous catalysis of solar-driven carbon dioxide conversion.
    Xu J, Roghabadi FA, Luo Y, Ahmadi V, Wang Q, Wang Z, He H.
    J Environ Sci (China); 2024 Jun 21; 140():165-182. PubMed ID: 38331498
    [Abstract] [Full Text] [Related]

  • 5. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.
    Highfield J.
    Molecules; 2015 Apr 15; 20(4):6739-93. PubMed ID: 25884553
    [Abstract] [Full Text] [Related]

  • 6. Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem.
    Jang YJ, Jeong I, Lee J, Lee J, Ko MJ, Lee JS.
    ACS Nano; 2016 Jul 26; 10(7):6980-7. PubMed ID: 27359299
    [Abstract] [Full Text] [Related]

  • 7. CO2 Reduction Using Water as an Electron Donor over Heterogeneous Photocatalysts Aiming at Artificial Photosynthesis.
    Yoshino S, Takayama T, Yamaguchi Y, Iwase A, Kudo A.
    Acc Chem Res; 2022 Apr 05; 55(7):966-977. PubMed ID: 35230087
    [Abstract] [Full Text] [Related]

  • 8. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.
    Singh MR, Clark EL, Bell AT.
    Proc Natl Acad Sci U S A; 2015 Nov 10; 112(45):E6111-8. PubMed ID: 26504215
    [Abstract] [Full Text] [Related]

  • 9. Solar-Driven CO2 Reduction Using a Semiconductor/Molecule Hybrid Photosystem: From Photocatalysts to a Monolithic Artificial Leaf.
    Morikawa T, Sato S, Sekizawa K, Suzuki TM, Arai T.
    Acc Chem Res; 2022 Apr 05; 55(7):933-943. PubMed ID: 34851099
    [Abstract] [Full Text] [Related]

  • 10. Organic Semiconductor-BiVO4 Tandem Devices for Solar-Driven H2O and CO2 Splitting.
    Yeung CWS, Andrei V, Lee TH, Durrant JR, Reisner E.
    Adv Mater; 2024 Aug 05; 36(35):e2404110. PubMed ID: 38943473
    [Abstract] [Full Text] [Related]

  • 11. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells.
    Qiu Y, Liu W, Chen W, Chen W, Zhou G, Hsu PC, Zhang R, Liang Z, Fan S, Zhang Y, Cui Y.
    Sci Adv; 2016 Jun 05; 2(6):e1501764. PubMed ID: 27386565
    [Abstract] [Full Text] [Related]

  • 12. Solar fuels via artificial photosynthesis.
    Gust D, Moore TA, Moore AL.
    Acc Chem Res; 2009 Dec 21; 42(12):1890-8. PubMed ID: 19902921
    [Abstract] [Full Text] [Related]

  • 13. Photocatalytic nanomaterials and their implications towards biomass conversion for renewable chemical and fuel production.
    Katre S, Baghmare P, Giri AS.
    Nanoscale Adv; 2024 Sep 30; 6(21):5258-84. PubMed ID: 39359352
    [Abstract] [Full Text] [Related]

  • 14. Floating perovskite-BiVO4 devices for scalable solar fuel production.
    Andrei V, Ucoski GM, Pornrungroj C, Uswachoke C, Wang Q, Achilleos DS, Kasap H, Sokol KP, Jagt RA, Lu H, Lawson T, Wagner A, Pike SD, Wright DS, Hoye RLZ, MacManus-Driscoll JL, Joyce HJ, Friend RH, Reisner E.
    Nature; 2022 Aug 30; 608(7923):518-522. PubMed ID: 35978127
    [Abstract] [Full Text] [Related]

  • 15. Semi-biological approaches to solar-to-chemical conversion.
    Fang X, Kalathil S, Reisner E.
    Chem Soc Rev; 2020 Jul 21; 49(14):4926-4952. PubMed ID: 32538416
    [Abstract] [Full Text] [Related]

  • 16. Photocatalytic Production of Syngas from Biomass.
    Wang M, Zhou H, Wang F.
    Acc Chem Res; 2023 May 02; 56(9):1057-1069. PubMed ID: 37043679
    [Abstract] [Full Text] [Related]

  • 17. A Semi-artificial Photoelectrochemical Tandem Leaf with a CO2 -to-Formate Efficiency Approaching 1 .
    Edwardes Moore E, Andrei V, Oliveira AR, Coito AM, Pereira IAC, Reisner E.
    Angew Chem Int Ed Engl; 2021 Dec 06; 60(50):26303-26307. PubMed ID: 34472692
    [Abstract] [Full Text] [Related]

  • 18. Solar-to-Chemical Fuel Conversion via Metal Halide Perovskite Solar-Driven Electrocatalysis.
    Huang H, Weng B, Zhang H, Lai F, Long J, Hofkens J, Douthwaite RE, Steele JA, Roeffaers MBJ.
    J Phys Chem Lett; 2022 Jan 13; 13(1):25-41. PubMed ID: 34957833
    [Abstract] [Full Text] [Related]

  • 19. Hybrid bioinorganic approach to solar-to-chemical conversion.
    Nichols EM, Gallagher JJ, Liu C, Su Y, Resasco J, Yu Y, Sun Y, Yang P, Chang MC, Chang CJ.
    Proc Natl Acad Sci U S A; 2015 Sep 15; 112(37):11461-6. PubMed ID: 26305947
    [Abstract] [Full Text] [Related]

  • 20. Solar reforming as an emerging technology for circular chemical industries.
    Bhattacharjee S, Linley S, Reisner E.
    Nat Rev Chem; 2024 Feb 15; 8(2):87-105. PubMed ID: 38291132
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.