These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 36426592
1. Nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry metabolomics studies on non-organic soybeans versus organic soybeans (Glycine max), and their fermentation by Rhizopus oligosporus. Chong SG, Ismail IS, Ahmad Azam A, Tan SJ, Shaari K, Tan JK. J Sci Food Agric; 2023 Apr; 103(6):3146-3156. PubMed ID: 36426592 [Abstract] [Full Text] [Related]
3. Production of volatile compounds by Rhizopus oligosporus during soybean and barley tempeh fermentation. Feng XM, Larsen TO, Schnürer J. Int J Food Microbiol; 2007 Jan 25; 113(2):133-41. PubMed ID: 16889859 [Abstract] [Full Text] [Related]
4. The production of a new tempeh-like fermented soybean containing a high level of gamma-aminobutyric acid by anaerobic incubation with Rhizopus. Aoki H, Uda I, Tagami K, Furuya Y, Endo Y, Fujimoto K. Biosci Biotechnol Biochem; 2003 May 25; 67(5):1018-23. PubMed ID: 12834278 [Abstract] [Full Text] [Related]
5. Targeted metabolomics for Aspergillus oryzae-mediated biotransformation of soybean isoflavones, showing variations in primary metabolites. Lee S, Seo MH, Oh DK, Lee CH. Biosci Biotechnol Biochem; 2014 May 25; 78(1):167-74. PubMed ID: 25036500 [Abstract] [Full Text] [Related]
8. Mass-based metabolomic analysis of soybean sprouts during germination. Gu EJ, Kim DW, Jang GJ, Song SH, Lee JI, Lee SB, Kim BM, Cho Y, Lee HJ, Kim HJ. Food Chem; 2017 Feb 15; 217():311-319. PubMed ID: 27664639 [Abstract] [Full Text] [Related]
9. Metabolite Changes in Indonesian Tempe Production from Raw Soybeans to Over-Fermented Tempe. Prativi MBN, Astuti DI, Putri SP, Laviña WA, Fukusaki E, Aditiawati P. Metabolites; 2023 Feb 17; 13(2):. PubMed ID: 36837919 [Abstract] [Full Text] [Related]
10. Highly geographical specificity of metabolomic traits among Korean domestic soybeans (Glycine max). Lee EM, Park SJ, Lee JE, Lee BM, Shin BK, Kang DJ, Choi HK, Kim YS, Lee DY. Food Res Int; 2019 Jun 17; 120():12-18. PubMed ID: 31000221 [Abstract] [Full Text] [Related]
12. Enrichment of two isoflavone aglycones in black soymilk by Rhizopus oligosporus NTU 5 in a plastic composite support bioreactor. Liu CT, Erh MH, Lin SP, Lo KY, Chen KI, Cheng KC. J Sci Food Agric; 2016 Aug 17; 96(11):3779-86. PubMed ID: 26676892 [Abstract] [Full Text] [Related]
15. Effect of fermentation with Rhizopus oligosporus on some physico-chemical properties of starch extracts from soybean flour. Olanipekun BF, Otunola ET, Adelakun OE, Oyelade OJ. Food Chem Toxicol; 2009 Jul 17; 47(7):1401-5. PubMed ID: 19268508 [Abstract] [Full Text] [Related]
16. Free fatty acids identified as antitryptic factor in soybeans fermented by Rhizopus oligosporus. Wang HL, Swain EW, Wallen LL, Hesseltine CW. J Nutr; 1975 Oct 17; 105(10):1351-5. PubMed ID: 1171938 [Abstract] [Full Text] [Related]
17. An Untargeted Metabolomics Approach to Study the Variation between Wild and Cultivated Soybeans. Tareq FS, Kotha RR, Natarajan S, Sun J, Luthria DL. Molecules; 2023 Jul 19; 28(14):. PubMed ID: 37513379 [Abstract] [Full Text] [Related]
18. Untargeted metabolomics analysis of non-volatile metabolites and dynamic changes of antioxidant capacity in Douchi with edible mushroom by-products. Rong PX, He XQ, Ayyash M, Liu Y, Wu DT, Geng F, Li HB, Ng SB, Liu HY, Gan RY. Food Chem; 2024 Jan 15; 431():137066. PubMed ID: 37572484 [Abstract] [Full Text] [Related]
19. pH-adjusted solvent extraction and reversed-phase HPLC quantification of isoflavones from soybean (Glycine max (L.) Merr.). Cho CH, Jung YS, Nam TG, Rha CS, Ko MJ, Jang D, Kim HS, Kim DO. J Food Sci; 2020 Mar 15; 85(3):673-681. PubMed ID: 32078761 [Abstract] [Full Text] [Related]