These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


450 related items for PubMed ID: 36446186

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY, Chang JS, Choi MS, Chang Y, Choi BS, Chun J, Keum KC, Kim JS, Kim YB.
    Radiat Oncol; 2021 Feb 25; 16(1):44. PubMed ID: 33632248
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Self-channel-and-spatial-attention neural network for automated multi-organ segmentation on head and neck CT images.
    Gou S, Tong N, Qi S, Yang S, Chin R, Sheng K.
    Phys Med Biol; 2020 Dec 11; 65(24):245034. PubMed ID: 32097892
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy.
    Savenije MHF, Maspero M, Sikkes GG, van der Voort van Zyp JRN, T J Kotte AN, Bol GH, T van den Berg CA.
    Radiat Oncol; 2020 May 11; 15(1):104. PubMed ID: 32393280
    [Abstract] [Full Text] [Related]

  • 28. RefineNet-based 2D and 3D automatic segmentations for clinical target volume and organs at risks for patients with cervical cancer in postoperative radiotherapy.
    Xiao C, Jin J, Yi J, Han C, Zhou Y, Ai Y, Xie C, Jin X.
    J Appl Clin Med Phys; 2022 Jul 11; 23(7):e13631. PubMed ID: 35533205
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques.
    Zhu J, Zhang J, Qiu B, Liu Y, Liu X, Chen L.
    Acta Oncol; 2019 Feb 11; 58(2):257-264. PubMed ID: 30398090
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.
    Kawula M, Hadi I, Nierer L, Vagni M, Cusumano D, Boldrini L, Placidi L, Corradini S, Belka C, Landry G, Kurz C.
    Med Phys; 2023 Mar 11; 50(3):1573-1585. PubMed ID: 36259384
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Geometric evaluations of CT and MRI based deep learning segmentation for brain OARs in radiotherapy.
    Alzahrani N, Henry A, Clark A, Murray L, Nix M, Al-Qaisieh B.
    Phys Med Biol; 2023 Aug 29; 68(17):. PubMed ID: 37579753
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods.
    Vrtovec T, Močnik D, Strojan P, Pernuš F, Ibragimov B.
    Med Phys; 2020 Sep 29; 47(9):e929-e950. PubMed ID: 32510603
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 23.