These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


237 related items for PubMed ID: 3644822

  • 1. Expression of the aminoacyl-tRNA synthetase complex in cultured Chinese hamster ovary cells. Specific depression of the methionyl-tRNA synthetase component upon methionine restriction.
    Lazard M, Mirande M, Waller JP.
    J Biol Chem; 1987 Mar 25; 262(9):3982-7. PubMed ID: 3644822
    [Abstract] [Full Text] [Related]

  • 2. A complex from cultured Chinese hamster ovary cells containing nine aminoacyl-tRNA synthetases. Thermolabile leucyl-tRNA synthetase from the tsH1 mutant cell line is an integral component of this complex.
    Mirande M, Le Corre D, Waller JP.
    Eur J Biochem; 1985 Mar 01; 147(2):281-9. PubMed ID: 3971983
    [Abstract] [Full Text] [Related]

  • 3. Role of methionyl-transfer ribonucleic acid in the regulation of methionyl-transfer ribonucleic acid synthetase of Escherichia coli K-12.
    Cassio D.
    J Bacteriol; 1975 Aug 01; 123(2):589-97. PubMed ID: 1097419
    [Abstract] [Full Text] [Related]

  • 4. Constitutive behavior of methionyl-tRNA synthetase compared to repressible behavior of methionine adenosyltransferase in mammalian cells.
    Rubnitz JE, Jacobsen SJ, Hoffman RM.
    Biochim Biophys Acta; 1981 Oct 12; 677(2):269-73. PubMed ID: 7197557
    [Abstract] [Full Text] [Related]

  • 5. Seven mammalian aminoacyl-tRNA synthetases associated within the same complex are functionally independent.
    Mirande M, Cirakoğlu B, Waller JP.
    Eur J Biochem; 1983 Mar 01; 131(1):163-70. PubMed ID: 6832139
    [Abstract] [Full Text] [Related]

  • 6. Purification and characterization of the isoleucyl-tRNA synthetase component from the high molecular weight complex of sheep liver: a hydrophobic metalloprotein.
    Lazard M, Mirande M, Waller JP.
    Biochemistry; 1985 Sep 10; 24(19):5099-106. PubMed ID: 4074679
    [Abstract] [Full Text] [Related]

  • 7. Modification of aminoacyl-tRNA synthetases with pyridoxal-5'-phosphate. Identification of the labeled amino acid residues.
    Kalogerakos T, Hountondji C, Berne PF, Dukta S, Blanquet S.
    Biochimie; 1994 Sep 10; 76(1):33-44. PubMed ID: 8031903
    [Abstract] [Full Text] [Related]

  • 8. Interactions of aminoacyl-tRNA synthetases in high-molecular-weight multienzyme complexes from rat liver.
    Dang CV, Ferguson B, Burke DJ, Garcia V, Yang DC.
    Biochim Biophys Acta; 1985 Jul 01; 829(3):319-26. PubMed ID: 4005265
    [Abstract] [Full Text] [Related]

  • 9. Generation of multiple forms of methionyl-tRNA synthetase from the multi-enzyme complex of mammalian aminoacyl-tRNA synthetases by endogenous proteolysis.
    Siddiqui FA, Yang DC.
    Biochim Biophys Acta; 1985 Apr 05; 828(2):177-87. PubMed ID: 3884048
    [Abstract] [Full Text] [Related]

  • 10. Role of 5SrRNA as a positive effector of some aminoacyl-tRNA synthetases in macromolecular complexes, with specific reference to methionyl-tRNA synthetase.
    Ogata K, Kurahashi A, Kenmochi N, Terao K.
    J Biochem; 1991 Dec 05; 110(6):1037-44. PubMed ID: 1665486
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Enhanced level and metabolic regulation of methionyl-transfer ribonucleic acid synthetase in different strains of Escherichia coli K-12.
    Cassio D, Mathien Y, Waller JP.
    J Bacteriol; 1975 Aug 05; 123(2):580-8. PubMed ID: 1097418
    [Abstract] [Full Text] [Related]

  • 14. Crucial role of an idiosyncratic insertion in the Rossman fold of class 1 aminoacyl-tRNA synthetases: the case of methionyl-tRNA synthetase.
    Fourmy D, Mechulam Y, Blanquet S.
    Biochemistry; 1995 Dec 05; 34(48):15681-8. PubMed ID: 7495798
    [Abstract] [Full Text] [Related]

  • 15. Interrelation between transfer RNA and amino-acid-activating sites of methionyl transfer RNA synthetase from Escherichia coli.
    Jacques Y, Blanquet S.
    Eur J Biochem; 1977 Oct 03; 79(2):433-41. PubMed ID: 336359
    [Abstract] [Full Text] [Related]

  • 16. Multiple forms of arginyl- and lysyl-tRNA synthetases in rat liver: a re-evaluation.
    Cirakoğlu B, Waller JP.
    Biochim Biophys Acta; 1985 Jun 10; 829(2):173-9. PubMed ID: 3995050
    [Abstract] [Full Text] [Related]

  • 17. Topographic modeling of free and methionyl-tRNA synthetase bound tRNAfMet by singlet-singlet energy transfer: bending of the 3'-terminal arm in tRNAfMet.
    Ferguson BQ, Yang DC.
    Biochemistry; 1986 Oct 21; 25(21):6572-8. PubMed ID: 3641634
    [Abstract] [Full Text] [Related]

  • 18. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases.
    Jakubowski H, Fersht AR.
    Nucleic Acids Res; 1981 Jul 10; 9(13):3105-17. PubMed ID: 7024910
    [Abstract] [Full Text] [Related]

  • 19. Macromolecular complex of aminoacyl-tRNA synthetases from sheep liver. Identification of the methionyl-tRNA synthetase component by affinity labeling.
    Brevet A, Geffrotin C, Kellermann O.
    Eur J Biochem; 1982 Jun 10; 124(3):483-8. PubMed ID: 6286305
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.