These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The inhibition mechanism of bound polyphenols extracted from mung bean coat dietary fiber on porcine pancreatic α-amylase: kinetic, spectroscopic, differential scanning calorimetric and molecular docking. Sun N, Xie J, Zheng B, Xie J, Chen Y, Hu X, Yu Q. Food Chem; 2024 Mar 15; 436():137749. PubMed ID: 37864970 [Abstract] [Full Text] [Related]
6. Interaction of cellulose nanocrystals and amylase: Its influence on enzyme activity and resistant starch content. Ji N, Liu C, Li M, Sun Q, Xiong L. Food Chem; 2018 Apr 15; 245():481-487. PubMed ID: 29287399 [Abstract] [Full Text] [Related]
9. An alpha-amylase inhibitor from cranberry bean (Phaseolus vulgaris): its specificity in inhibition of mammalian pancreatic alpha-amylases and formation of a complex with the porcine enzyme. Kotaru M, Yoshikawa H, Ikeuchi T, Saito K, Iwami K, Ibuki F. J Nutr Sci Vitaminol (Tokyo); 1987 Oct 15; 33(5):359-67. PubMed ID: 3502137 [Abstract] [Full Text] [Related]
10. Inhibitory kinetics and mechanism of flavonoids from lotus (Nelumbo nucifera Gaertn.) leaf against pancreatic α-amylase. Wang M, Shi J, Wang L, Hu Y, Ye X, Liu D, Chen J. Int J Biol Macromol; 2018 Dec 15; 120(Pt B):2589-2596. PubMed ID: 30195612 [Abstract] [Full Text] [Related]
11. Mechanism of porcine pancreatic alpha-amylase. Inhibition of amylose and maltopentaose hydrolysis by alpha-, beta- and gamma-cyclodextrins. Koukiekolo R, Desseaux V, Moreau Y, Marchis-Mouren G, Santimone M. Eur J Biochem; 2001 Feb 15; 268(3):841-8. PubMed ID: 11168426 [Abstract] [Full Text] [Related]
12. Effect of tin oxide nanoparticle binding on the structure and activity of α-amylase from Bacillus amyloliquefaciens. Khan MJ, Qayyum S, Alam F, Husain Q. Nanotechnology; 2011 Nov 11; 22(45):455708. PubMed ID: 22020314 [Abstract] [Full Text] [Related]
13. Encapsulation, protection, and delivery of curcumin using succinylated-cyclodextrin systems with strong resistance to environmental and physiological stimuli. Hu Y, Qiu C, Julian McClements D, Qin Y, Long J, Jiao A, Li X, Wang J, Jin Z. Food Chem; 2021 Dec 16; 376():131869. PubMed ID: 34971893 [Abstract] [Full Text] [Related]
15. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Zheng Y, Tian J, Yang W, Chen S, Liu D, Fang H, Zhang H, Ye X. Food Chem; 2020 Jul 01; 317():126346. PubMed ID: 32070843 [Abstract] [Full Text] [Related]
16. Efficient Immobilization of Porcine Pancreatic α-Amylase on Amino-Functionalized Magnetite Nanoparticles: Characterization and Stability Evaluation of the Immobilized Enzyme. Akhond M, Pashangeh K, Karbalaei-Heidari HR, Absalan G. Appl Biochem Biotechnol; 2016 Nov 01; 180(5):954-968. PubMed ID: 27240662 [Abstract] [Full Text] [Related]
17. Structure-activity relationships and the underlying mechanism of α-amylase inhibition by hyperoside and quercetin: Multi-spectroscopy and molecular docking analyses. Shen H, Wang J, Ao J, Hou Y, Xi M, Cai Y, Li M, Luo A. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan 15; 285():121797. PubMed ID: 36115306 [Abstract] [Full Text] [Related]
19. In vitro inhibitory effects of Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves proanthocyanidins on pancreatic α-amylase and their interaction. Wang M, Chen J, Ye X, Liu D. Bioorg Chem; 2020 Aug 15; 101():104029. PubMed ID: 32615466 [Abstract] [Full Text] [Related]
20. Simple Strategy Preparing Cyclodextrin Carboxylate as a Highly Effective Carrier for Bioactive Compounds. Hu Y, Qiu C, McClements DJ, Qin Y, Fan L, Xu X, Wang J, Jin Z. J Agric Food Chem; 2021 Sep 22; 69(37):11006-11014. PubMed ID: 34491745 [Abstract] [Full Text] [Related] Page: [Next] [New Search]