These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


183 related items for PubMed ID: 36468977

  • 1. Simultaneous Monitoring of Atmospheric CH4, N2O, and H2O Using a Single Gas Sensor Based on Mid-IR Quartz-Enhanced Photoacoustic Spectroscopy.
    Yi H, Laurent O, Schilt S, Ramonet M, Gao X, Dong L, Chen W.
    Anal Chem; 2022 Dec 20; 94(50):17522-17532. PubMed ID: 36468977
    [Abstract] [Full Text] [Related]

  • 2. CW EC-QCL-based sensor for simultaneous detection of H2O, HDO, N2O and CH4 using multi-pass absorption spectroscopy.
    Yu Y, Sanchez NP, Griffin RJ, Tittel FK.
    Opt Express; 2016 May 16; 24(10):10391-401. PubMed ID: 27409863
    [Abstract] [Full Text] [Related]

  • 3. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL.
    Ma Y, Lewicki R, Razeghi M, Tittel FK.
    Opt Express; 2013 Jan 14; 21(1):1008-19. PubMed ID: 23388995
    [Abstract] [Full Text] [Related]

  • 4. Environmental Monitoring of Methane with Quartz-Enhanced Photoacoustic Spectroscopy Exploiting an Electronic Hygrometer to Compensate the H2O Influence on the Sensor Signal.
    Elefante A, Menduni G, Rossmadl H, Mackowiak V, Giglio M, Sampaolo A, Patimisco P, Passaro VMN, Spagnolo V.
    Sensors (Basel); 2020 May 22; 20(10):. PubMed ID: 32455887
    [Abstract] [Full Text] [Related]

  • 5. A compact QCL based methane and nitrous oxide sensor for environmental and medical applications.
    Jahjah M, Ren W, Stefański P, Lewicki R, Zhang J, Jiang W, Tarka J, Tittel FK.
    Analyst; 2014 May 07; 139(9):2065-9. PubMed ID: 24427770
    [Abstract] [Full Text] [Related]

  • 6. Humidity enhanced N2O photoacoustic sensor with a 4.53 μm quantum cascade laser and Kalman filter.
    Cao Y, Wang R, Peng J, Liu K, Chen W, Wang G, Gao X.
    Photoacoustics; 2021 Dec 07; 24():100303. PubMed ID: 34540587
    [Abstract] [Full Text] [Related]

  • 7. Infrared dual-gas CH4/C2H2 sensor system based on dual-channel off-beam quartz-enhanced photoacoustic spectroscopy and time-division multiplexing technique.
    Ye W, Xia Z, Hu L, Luo W, Liu W, Xu X, Zheng C.
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan 15; 285():121908. PubMed ID: 36174401
    [Abstract] [Full Text] [Related]

  • 8. Multi-gas quartz-enhanced photoacoustic sensor for environmental monitoring exploiting a Vernier effect-based quantum cascade laser.
    Zifarelli A, De Palo R, Patimisco P, Giglio M, Sampaolo A, Blaser S, Butet J, Landry O, Müller A, Spagnolo V.
    Photoacoustics; 2022 Dec 15; 28():100401. PubMed ID: 36105377
    [Abstract] [Full Text] [Related]

  • 9. Fiber-Coupled Quartz-Enhanced Photoacoustic Spectroscopy System for Methane and Ethane Monitoring in the Near-Infrared Spectral Range.
    Menduni G, Sgobba F, Russo SD, Ranieri AC, Sampaolo A, Patimisco P, Giglio M, Passaro VMN, Csutak S, Assante D, Ranieri E, Geoffrion E, Spagnolo V.
    Molecules; 2020 Nov 28; 25(23):. PubMed ID: 33260601
    [Abstract] [Full Text] [Related]

  • 10. Compact quantum cascade laser based quartz-enhanced photoacoustic spectroscopy sensor system for detection of carbon disulfide.
    Waclawek JP, Moser H, Lendl B.
    Opt Express; 2016 Mar 21; 24(6):6559-71. PubMed ID: 27136846
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Broadband detection of methane and nitrous oxide using a distributed-feedback quantum cascade laser array and quartz-enhanced photoacoustic sensing.
    Giglio M, Zifarelli A, Sampaolo A, Menduni G, Elefante A, Blanchard R, Pfluegl C, Witinski MF, Vakhshoori D, Wu H, Passaro VMN, Patimisco P, Tittel FK, Dong L, Spagnolo V.
    Photoacoustics; 2020 Mar 21; 17():100159. PubMed ID: 31956489
    [Abstract] [Full Text] [Related]

  • 13. Mid-Infrared Trace Gas Sensor Technology Based on Intracavity Quartz-Enhanced Photoacoustic Spectroscopy.
    Wojtas J, Gluszek A, Hudzikowski A, Tittel FK.
    Sensors (Basel); 2017 Mar 04; 17(3):. PubMed ID: 28273836
    [Abstract] [Full Text] [Related]

  • 14. A Miniaturized 3D-Printed Quartz-Enhanced Photoacoustic Spectroscopy Sensor for Methane Detection with a High-Power Diode Laser.
    Chen Y, Liang T, Qiao S, Ma Y.
    Sensors (Basel); 2023 Apr 17; 23(8):. PubMed ID: 37112375
    [Abstract] [Full Text] [Related]

  • 15. Mid-infrared intracavity quartz-enhanced photoacoustic spectroscopy with pptv - Level sensitivity using a T-shaped custom tuning fork.
    Hayden J, Giglio M, Sampaolo A, Spagnolo V, Lendl B.
    Photoacoustics; 2022 Mar 17; 25():100330. PubMed ID: 35198376
    [Abstract] [Full Text] [Related]

  • 16. Trace Gas Detection System Based on All-Optical Quartz-Enhanced Photoacoustic Spectroscopy.
    Lin C, Liao Y, Fang F.
    Appl Spectrosc; 2019 Nov 17; 73(11):1327-1333. PubMed ID: 31373509
    [Abstract] [Full Text] [Related]

  • 17. Dual-Gas Quartz-Enhanced Photoacoustic Sensor for Simultaneous Detection of Methane/Nitrous Oxide and Water Vapor.
    Elefante A, Giglio M, Sampaolo A, Menduni G, Patimisco P, Passaro VMN, Wu H, Rossmadl H, Mackowiak V, Cable A, Tittel FK, Dong L, Spagnolo V.
    Anal Chem; 2019 Oct 15; 91(20):12866-12873. PubMed ID: 31500409
    [Abstract] [Full Text] [Related]

  • 18. Application of Micro Quartz Tuning Fork in Trace Gas Sensing by Use of Quartz-Enhanced Photoacoustic Spectroscopy.
    Lin H, Huang Z, Kan R, Zheng H, Liu Y, Liu B, Dong L, Zhu W, Tang J, Yu J, Chen Z, Tittel FK.
    Sensors (Basel); 2019 Nov 28; 19(23):. PubMed ID: 31795247
    [Abstract] [Full Text] [Related]

  • 19. Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser.
    Yin X, Dong L, Zheng H, Liu X, Wu H, Yang Y, Ma W, Zhang L, Yin W, Xiao L, Jia S.
    Sensors (Basel); 2016 Jan 27; 16(2):162. PubMed ID: 26828491
    [Abstract] [Full Text] [Related]

  • 20. Applicability of a gas analyzer with dual quantum cascade lasers for simultaneous measurements of N2O, CH4 and CO2 fluxes from cropland using the eddy covariance technique.
    Wang D, Wang K, Zheng X, Butterbach-Bahl K, Díaz-Pinés E, Chen H.
    Sci Total Environ; 2020 Aug 10; 729():138784. PubMed ID: 32361435
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.