These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
186 related items for PubMed ID: 36498928
1. Non-Conserved Amino Acid Residues Modulate the Thermodynamics of Zn(II) Binding to Classical ββα Zinc Finger Domains. Kluska K, Chorążewska A, Peris-Díaz MD, Adamczyk J, Krężel A. Int J Mol Sci; 2022 Nov 23; 23(23):. PubMed ID: 36498928 [Abstract] [Full Text] [Related]
2. Structural metal sites in nonclassical zinc finger proteins involved in transcriptional and translational regulation. Lee SJ, Michel SL. Acc Chem Res; 2014 Aug 19; 47(8):2643-50. PubMed ID: 25098749 [Abstract] [Full Text] [Related]
3. Characterization of the Zn(II) binding properties of the human Wilms' tumor suppressor protein C-terminal zinc finger peptide. Chan KL, Bakman I, Marts AR, Batir Y, Dowd TL, Tierney DL, Gibney BR. Inorg Chem; 2014 Jun 16; 53(12):6309-20. PubMed ID: 24893204 [Abstract] [Full Text] [Related]
4. Metal binding properties of zinc fingers with a naturally altered metal binding site. Kluska K, Adamczyk J, Krężel A. Metallomics; 2018 Feb 21; 10(2):248-263. PubMed ID: 29230465 [Abstract] [Full Text] [Related]
5. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides. Reddi AR, Guzman TR, Breece RM, Tierney DL, Gibney BR. J Am Chem Soc; 2007 Oct 24; 129(42):12815-27. PubMed ID: 17902663 [Abstract] [Full Text] [Related]
6. Structural and dynamical characterization of the Miz-1 zinc fingers 5-8 by solution-state NMR. Bernard D, Bédard M, Bilodeau J, Lavigne P. J Biomol NMR; 2013 Oct 24; 57(2):103-16. PubMed ID: 23975355 [Abstract] [Full Text] [Related]
7. Conformational heterogeneity in the C-terminal zinc fingers of human MTF-1: an NMR and zinc-binding study. Giedroc DP, Chen X, Pennella MA, LiWang AC. J Biol Chem; 2001 Nov 09; 276(45):42322-32. PubMed ID: 11524427 [Abstract] [Full Text] [Related]
8. Evaluation of the Intrinsic Zn(II) Affinity of a Cys3His1 Site in the Absence of Protein Folding Effects. Reddi AR, Pawlowska M, Gibney BR. Inorg Chem; 2015 Jun 15; 54(12):5942-8. PubMed ID: 26016528 [Abstract] [Full Text] [Related]
9. MRE-Binding transcription factor-1: weak zinc-binding finger domains 5 and 6 modulate the structure, affinity, and specificity of the metal-response element complex. Chen X, Chu M, Giedroc DP. Biochemistry; 1999 Sep 28; 38(39):12915-25. PubMed ID: 10504263 [Abstract] [Full Text] [Related]
11. Neural Zinc Finger Factor/Myelin Transcription Factor Proteins: Metal Binding, Fold, and Function. Besold AN, Michel SL. Biochemistry; 2015 Jul 28; 54(29):4443-52. PubMed ID: 26158299 [Abstract] [Full Text] [Related]
12. Thermodynamics of Zn2+ binding to Cys2His2 and Cys2HisCys zinc fingers and a Cys4 transcription factor site. Rich AM, Bombarda E, Schenk AD, Lee PE, Cox EH, Spuches AM, Hudson LD, Kieffer B, Wilcox DE. J Am Chem Soc; 2012 Jun 27; 134(25):10405-18. PubMed ID: 22591173 [Abstract] [Full Text] [Related]
13. The six zinc fingers of metal-responsive element binding transcription factor-1 form stable and quasi-ordered structures with relatively small differences in zinc affinities. Potter BM, Feng LS, Parasuram P, Matskevich VA, Wilson JA, Andrews GK, Laity JH. J Biol Chem; 2005 Aug 05; 280(31):28529-40. PubMed ID: 16055450 [Abstract] [Full Text] [Related]
14. Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae. Wang Z, Feng LS, Matskevich V, Venkataraman K, Parasuram P, Laity JH. J Mol Biol; 2006 Apr 07; 357(4):1167-83. PubMed ID: 16483601 [Abstract] [Full Text] [Related]
15. Structural and functional heterogeneity among the zinc fingers of human MRE-binding transcription factor-1. Chen X, Agarwal A, Giedroc DP. Biochemistry; 1998 Aug 11; 37(32):11152-61. PubMed ID: 9698361 [Abstract] [Full Text] [Related]
16. Why zinc fingers prefer zinc: ligand-field symmetry and the hidden thermodynamics of metal ion selectivity. Lachenmann MJ, Ladbury JE, Dong J, Huang K, Carey P, Weiss MA. Biochemistry; 2004 Nov 09; 43(44):13910-25. PubMed ID: 15518539 [Abstract] [Full Text] [Related]
17. Zn(II) binding and DNA binding properties of ligand-substituted CXHH-type zinc finger proteins. Imanishi M, Matsumura K, Tsuji S, Nakaya T, Negi S, Futaki S, Sugiura Y. Biochemistry; 2012 Apr 24; 51(16):3342-8. PubMed ID: 22482427 [Abstract] [Full Text] [Related]
18. Switching metal ion coordination and DNA Recognition in a Tandem CCHHC-type zinc finger peptide. Besold AN, Oluyadi AA, Michel SL. Inorg Chem; 2013 Apr 15; 52(8):4721-8. PubMed ID: 23521535 [Abstract] [Full Text] [Related]
19. Zn(2+) binding properties of single-point mutants of the C-terminal zinc finger of the HIV-1 nucleocapsid protein: evidence of a critical role of cysteine 49 in Zn(2+) dissociation. Bombarda E, Cherradi H, Morellet N, Roques BP, Mély Y. Biochemistry; 2002 Apr 02; 41(13):4312-20. PubMed ID: 11914077 [Abstract] [Full Text] [Related]
20. Structural Insights into c-Myc-interacting Zinc Finger Protein-1 (Miz-1) Delineate Domains Required for DNA Scanning and Sequence-specific Binding. Bédard M, Roy V, Montagne M, Lavigne P. J Biol Chem; 2017 Feb 24; 292(8):3323-3340. PubMed ID: 28035002 [Abstract] [Full Text] [Related] Page: [Next] [New Search]