These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Decavanadate interacts with microsomal NADH oxidation system and enhances cytochrome c reduction. Ramasarma T, Rao AV. Mol Cell Biochem; 2006 Jan; 281(1-2):139-44. PubMed ID: 16328966 [Abstract] [Full Text] [Related]
27. Oxidation of NADH by vanadium compounds in the presence of thiols. Keller RJ, Coulombe RA, Sharma RP, Grover TA, Piette LH. Arch Biochem Biophys; 1989 May 15; 271(1):40-8. PubMed ID: 2540716 [Abstract] [Full Text] [Related]
28. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH. Rashba-Step J, Turro NJ, Cederbaum AI. Arch Biochem Biophys; 1993 Jan 15; 300(1):391-400. PubMed ID: 8380968 [Abstract] [Full Text] [Related]
29. Reduction of vanadate by a microsomal redox system. Patole MS, Kurup CK, Ramasarma T. Biochem Biophys Res Commun; 1986 Nov 26; 141(1):171-5. PubMed ID: 3800994 [Abstract] [Full Text] [Related]
30. Role of cytochrome b5 in NADH-dependent microsomal reduction of ferric complexes, lipid peroxidation, and hydrogen peroxide generation. Yang MX, Cederbaum AI. Arch Biochem Biophys; 1995 Dec 20; 324(2):282-92. PubMed ID: 8554320 [Abstract] [Full Text] [Related]
31. Oxidation of NADH by vanadium: kinetics, effects of ligands and role of H2O2 or O2. Stankiewicz PJ, Stern A, Davison AJ. Arch Biochem Biophys; 1991 May 15; 287(1):8-17. PubMed ID: 1654805 [Abstract] [Full Text] [Related]
32. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals. Kukiełka E, Puntarulo S, Cederbaum AI. Arch Biochem Biophys; 1989 Sep 15; 273(2):319-30. PubMed ID: 2774554 [Abstract] [Full Text] [Related]
33. Increased NADH-dependent production of reactive oxygen intermediates by microsomes after chronic ethanol consumption: comparisons with NADPH. Dicker E, Cederbaum AI. Arch Biochem Biophys; 1992 Mar 15; 293(2):274-80. PubMed ID: 1311163 [Abstract] [Full Text] [Related]
34. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents. Dicker E, Cederbaum AI. Biochem Pharmacol; 1991 Jul 15; 42(3):529-35. PubMed ID: 1650215 [Abstract] [Full Text] [Related]
35. Stimulation of microsomal production of reactive oxygen intermediates by rifamycin SV: effect of ferric complexes and comparisons between NADPH and NADH. Kukiełka E, Cederbaum AI. Arch Biochem Biophys; 1992 Nov 01; 298(2):602-11. PubMed ID: 1329662 [Abstract] [Full Text] [Related]
36. Vanadate stimulated NADH oxidation in sarcoplasmic reticulum membrane. Molnár E, Kiss Z, Dux L, Guba F. Acta Biochim Biophys Hung; 1988 Nov 01; 23(1):63-74. PubMed ID: 2970751 [Abstract] [Full Text] [Related]
37. The effect of aluminum on the vanadium-mediated oxidation of NADH. Adler AJ, Caruso C, Berlyne GM. Nephron; 1995 Nov 01; 69(1):34-40. PubMed ID: 7891795 [Abstract] [Full Text] [Related]
38. NADH oxidation is stimulated by an intermediate formed during vanadyl-H2O2 interaction. Ravishankar HN, Kalyani P, Ramasarma T. Biochim Biophys Acta; 1994 Nov 11; 1201(2):289-97. PubMed ID: 7947944 [Abstract] [Full Text] [Related]
39. Hydroxyl radicals is not a significant intermediate in the vanadate-stimulated oxidation of NAD(P)H by O2. Liochev SI, Fridovich I. Arch Biochem Biophys; 1989 Nov 15; 275(1):40-3. PubMed ID: 2554810 [Abstract] [Full Text] [Related]