These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. The ecological potentials of Phytomyxea ("plasmodiophorids") in aquatic food webs. Neuhauser S, Kirchmair M, Gleason FH. Hydrobiologia; 2011 Jan; 659(1):23-35. PubMed ID: 21339888 [Abstract] [Full Text] [Related]
25. Assimilation of diazotrophic nitrogen into pelagic food webs. Woodland RJ, Holland DP, Beardall J, Smith J, Scicluna T, Cook PL. PLoS One; 2013 Jan; 8(6):e67588. PubMed ID: 23840744 [Abstract] [Full Text] [Related]
26. Dietary fatty acid transfer in pelagic food webs across trophic and climatic differences of Chinese lakes. Zhang Y, Feng K, Song D, Wang Q, Ye S, Liu J, Kainz MJ. Sci Total Environ; 2024 Feb 25; 913():169562. PubMed ID: 38142998 [Abstract] [Full Text] [Related]
27. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Ger KA, Urrutia-Cordero P, Frost PC, Hansson LA, Sarnelle O, Wilson AE, Lürling M. Harmful Algae; 2016 Apr 25; 54():128-144. PubMed ID: 28073472 [Abstract] [Full Text] [Related]
29. Seasonal Dynamics of Pelagic Mycoplanktonic Communities: Interplay of Taxon Abundance, Temporal Occurrence, and Biotic Interactions. Banos S, Gysi DM, Richter-Heitmann T, Glöckner FO, Boersma M, Wiltshire KH, Gerdts G, Wichels A, Reich M. Front Microbiol; 2020 Apr 25; 11():1305. PubMed ID: 32676057 [Abstract] [Full Text] [Related]
30. Microbial parasites make cyanobacteria blooms less of a trophic dead end than commonly assumed. Haraldsson M, Gerphagnon M, Bazin P, Colombet J, Tecchio S, Sime-Ngando T, Niquil N. ISME J; 2018 Apr 25; 12(4):1008-1020. PubMed ID: 29416126 [Abstract] [Full Text] [Related]
31. Filter-feeding fish (Hypophthalmichthys molitrix) mediated phosphorus recycling versus grazing pressure as drivers of the trophic cascade in large enclosures subsidized by allochthonous detritus. Lin Q, Zeng D, Guo T, Peng L. Water Res; 2021 Oct 01; 204():117579. PubMed ID: 34455159 [Abstract] [Full Text] [Related]
32. Multiple vs. single phytoplankton species alter stoichiometry of trophic interaction with zooplankton. Plum C, Hüsener M, Hillebrand H. Ecology; 2015 Nov 01; 96(11):3075-89. PubMed ID: 27070025 [Abstract] [Full Text] [Related]
35. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels. Gusha MNC, Dalu T, Wasserman RJ, McQuaid CD. Sci Total Environ; 2019 Feb 15; 651(Pt 1):410-418. PubMed ID: 30240923 [Abstract] [Full Text] [Related]
36. Exploring the role of spatial and stoichiometric heterogeneity in the top-down control in eutrophic planktonic ecosystems. Sandhu SK, Morozov A, Juan L. J Theor Biol; 2020 Aug 21; 499():110311. PubMed ID: 32437709 [Abstract] [Full Text] [Related]
37. Bottom-up linkages between primary production, zooplankton, and fish in a shallow, hypereutrophic lake. Matsuzaki SS, Suzuki K, Kadoya T, Nakagawa M, Takamura N. Ecology; 2018 Sep 21; 99(9):2025-2036. PubMed ID: 29884987 [Abstract] [Full Text] [Related]
38. Trophic dynamics in an aquatic community: interactions among primary producers, grazers, and a pathogenic fungus. Buck JC, Scholz KI, Rohr JR, Blaustein AR. Oecologia; 2015 May 21; 178(1):239-48. PubMed ID: 25432573 [Abstract] [Full Text] [Related]