These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


236 related items for PubMed ID: 36525181

  • 1. Simulation of LDL permeation into multilayer wall of a coronary bifurcation using WSS-dependent model: effects of hemorheology.
    Moniripiri M, Hassani Soukht Abandani M, Firoozabadi B.
    Biomech Model Mechanobiol; 2023 Apr; 22(2):711-727. PubMed ID: 36525181
    [Abstract] [Full Text] [Related]

  • 2. Divergence of the normalized wall shear stress as an effective computational template of low-density lipoprotein polarization at the arterial blood-vessel wall interface.
    Mazzi V, De Nisco G, Calò K, Chiastra C, Daemen J, Steinman DA, Wentzel JJ, Morbiducci U, Gallo D.
    Comput Methods Programs Biomed; 2022 Nov; 226():107174. PubMed ID: 36223707
    [Abstract] [Full Text] [Related]

  • 3. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N, Torii R, Wood NB, Hughes AD, Thom SA, Xu XY.
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [Abstract] [Full Text] [Related]

  • 4. Simulation of Low Density Lipoprotein (LDL) permeation into multilayer coronary arterial wall: Interactive effects of wall shear stress and fluid-structure interaction in hypertension.
    Roustaei M, Nikmaneshi MR, Firoozabadi B.
    J Biomech; 2018 Jan 23; 67():114-122. PubMed ID: 29273220
    [Abstract] [Full Text] [Related]

  • 5. Low-density lipoprotein accumulation within a carotid artery with multilayer elastic porous wall: fluid-structure interaction and non-Newtonian considerations.
    Deyranlou A, Niazmand H, Sadeghi MR.
    J Biomech; 2015 Sep 18; 48(12):2948-59. PubMed ID: 26300402
    [Abstract] [Full Text] [Related]

  • 6. Endothelium resolving simulations of wall shear-stress dependent mass transfer of LDL in diseased coronary arteries.
    Kenjereš S, van der Krieke JP, Li C.
    Comput Biol Med; 2019 Nov 18; 114():103453. PubMed ID: 31561097
    [Abstract] [Full Text] [Related]

  • 7. Fluid-wall modelling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties.
    Sun N, Wood NB, Hughes AD, Thom SA, Xu XY.
    Ann Biomed Eng; 2006 Jul 18; 34(7):1119-28. PubMed ID: 16791491
    [Abstract] [Full Text] [Related]

  • 8. Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model.
    Sun N, Wood NB, Hughes AD, Thom SA, Yun Xu X.
    Am J Physiol Heart Circ Physiol; 2007 Jun 18; 292(6):H3148-57. PubMed ID: 17277019
    [Abstract] [Full Text] [Related]

  • 9. Image-based computational simulation of sub-endothelial LDL accumulation in a human right coronary artery.
    Nouri M, Jalali F, Karimi G, Zarrabi K.
    Comput Biol Med; 2015 Jul 18; 62():206-21. PubMed ID: 25957745
    [Abstract] [Full Text] [Related]

  • 10. Modelling and simulation of low-density lipoprotein transport through multi-layered wall of an anatomically realistic carotid artery bifurcation.
    Kenjereš S, de Loor A.
    J R Soc Interface; 2014 Feb 06; 11(91):20130941. PubMed ID: 24284897
    [Abstract] [Full Text] [Related]

  • 11. Analysis of non-Newtonian effects on Low-Density Lipoprotein accumulation in an artery.
    Iasiello M, Vafai K, Andreozzi A, Bianco N.
    J Biomech; 2016 Jun 14; 49(9):1437-1446. PubMed ID: 27055766
    [Abstract] [Full Text] [Related]

  • 12. Wall shear stress on LDL accumulation in human RCAs.
    Soulis JV, Fytanidis DK, Papaioannou VC, Giannoglou GD.
    Med Eng Phys; 2010 Oct 14; 32(8):867-77. PubMed ID: 20580302
    [Abstract] [Full Text] [Related]

  • 13. The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension.
    Dabagh M, Jalali P, Tarbell JM.
    Am J Physiol Heart Circ Physiol; 2009 Sep 14; 297(3):H983-96. PubMed ID: 19592615
    [Abstract] [Full Text] [Related]

  • 14. Wall shear stress in normal left coronary artery tree.
    Soulis JV, Farmakis TM, Giannoglou GD, Louridas GE.
    J Biomech; 2006 Sep 14; 39(4):742-9. PubMed ID: 16439244
    [Abstract] [Full Text] [Related]

  • 15. Influence of non-Newtonian properties of blood on the wall shear stress in human atherosclerotic right coronary arteries.
    Liu B, Tang D.
    Mol Cell Biomech; 2011 Mar 14; 8(1):73-90. PubMed ID: 21379375
    [Abstract] [Full Text] [Related]

  • 16. Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress.
    Olgac U, Kurtcuoglu V, Poulikakos D.
    Am J Physiol Heart Circ Physiol; 2008 Feb 14; 294(2):H909-19. PubMed ID: 18083898
    [Abstract] [Full Text] [Related]

  • 17. Low-Density Lipoprotein concentration in the normal Left Coronary Artery tree.
    Soulis JV, Giannoglou GD, Papaioannou V, Parcharidis GE, Louridas GE.
    Biomed Eng Online; 2008 Oct 17; 7():26. PubMed ID: 18925974
    [Abstract] [Full Text] [Related]

  • 18. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL, Wu J, Liu G, Huang W, Ghista DN.
    Med Biol Eng Comput; 2020 Aug 17; 58(8):1831-1843. PubMed ID: 32519006
    [Abstract] [Full Text] [Related]

  • 19. Low density lipoprotein transport through patient-specific thoracic arterial wall.
    Mpairaktaris DG, Soulis JV, Giannoglou GD.
    Comput Biol Med; 2017 Oct 01; 89():115-126. PubMed ID: 28800440
    [Abstract] [Full Text] [Related]

  • 20. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K, Rappitsch G.
    J Biomech; 1995 Jul 01; 28(7):845-56. PubMed ID: 7657682
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.