These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


714 related items for PubMed ID: 3655871

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Raphe magnus-induced descending inhibition of spinal nociceptive neurons is mediated through contralateral spinal pathways in the cat.
    Sandkühler J, Maisch B, Zimmermann M.
    Neurosci Lett; 1987 May 06; 76(2):168-72. PubMed ID: 3587751
    [Abstract] [Full Text] [Related]

  • 5. Spinal pathways mediating tonic, coeruleospinal, and raphe-spinal descending inhibition in the rat.
    Jones SL, Gebhart GF.
    J Neurophysiol; 1987 Jul 06; 58(1):138-59. PubMed ID: 3612222
    [Abstract] [Full Text] [Related]

  • 6. Inhibition of spinal nociceptive neurons by excitation of cell bodies or fibers of passage at various brainstem sites in the cat.
    Sandkühler J, Helmchen C, Fu QG, Zimmermann M.
    Neurosci Lett; 1988 Oct 31; 93(1):67-72. PubMed ID: 2905438
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Inhibition of spinal nociceptive neurons by microinjections of somatostatin into the nucleus raphe magnus and the midbrain periaqueductal gray of the anesthetized cat.
    Helmchen C, Fu QG, Sandkühler J.
    Neurosci Lett; 1995 Mar 03; 187(2):137-41. PubMed ID: 7783961
    [Abstract] [Full Text] [Related]

  • 9. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons.
    Gray BG, Dostrovsky JO.
    J Neurophysiol; 1983 Apr 03; 49(4):932-47. PubMed ID: 6854362
    [Abstract] [Full Text] [Related]

  • 10. Inhibition in spinal cord of nociceptive information by electrical stimulation and morphine microinjection at identical sites in midbrain of the cat.
    Gebhart GF, Sandkühler J, Thalhammer JG, Zimmermann M.
    J Neurophysiol; 1984 Jan 03; 51(1):75-89. PubMed ID: 6693935
    [Abstract] [Full Text] [Related]

  • 11. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons.
    Dostrovsky JO, Shah Y, Gray BG.
    J Neurophysiol; 1983 Apr 03; 49(4):948-60. PubMed ID: 6854363
    [Abstract] [Full Text] [Related]

  • 12. Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive reflex in the pentobarbital-anesthetized rat.
    Sandkühler J, Gebhart GF.
    Brain Res; 1984 Jul 02; 305(1):77-87. PubMed ID: 6744063
    [Abstract] [Full Text] [Related]

  • 13. Quantitative comparison of inhibition of visceral and cutaneous spinal nociceptive transmission from the midbrain and medulla in the rat.
    Ness TJ, Gebhart GF.
    J Neurophysiol; 1987 Oct 02; 58(4):850-65. PubMed ID: 2824712
    [Abstract] [Full Text] [Related]

  • 14. Primate raphe- and reticulospinal neurons: effects of stimulation in periaqueductal gray or VPLc thalamic nucleus.
    Willis WD, Gerhart KD, Willcockson WS, Yezierski RP, Wilcox TK, Cargill CL.
    J Neurophysiol; 1984 Mar 02; 51(3):467-80. PubMed ID: 6422009
    [Abstract] [Full Text] [Related]

  • 15. Pathways mediating descending control of spinal nociceptive transmission from the nuclei locus coeruleus (LC) and raphe magnus (NRM) in the cat.
    Mokha SS, McMillan JA, Iggo A.
    Exp Brain Res; 1986 Mar 02; 61(3):597-606. PubMed ID: 3007190
    [Abstract] [Full Text] [Related]

  • 16. Stimulation-produced spinal inhibition from the midbrain in the rat is mediated by an excitatory amino acid neurotransmitter in the medial medulla.
    Aimone LD, Gebhart GF.
    J Neurosci; 1986 Jun 02; 6(6):1803-13. PubMed ID: 2872283
    [Abstract] [Full Text] [Related]

  • 17. Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat.
    Pertovaara A, Kontinen VK, Kalso EA.
    Exp Neurol; 1997 Oct 02; 147(2):428-36. PubMed ID: 9344567
    [Abstract] [Full Text] [Related]

  • 18. Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray.
    Hayashi H, Sumino R, Sessle BJ.
    J Neurophysiol; 1984 May 02; 51(5):890-905. PubMed ID: 6726316
    [Abstract] [Full Text] [Related]

  • 19. Viscerosomatic neurons in the lower thoracic spinal cord of the cat: excitations and inhibitions evoked by splanchnic and somatic nerve volleys and by stimulation of brain stem nuclei.
    Tattersall JE, Cervero F, Lumb BM.
    J Neurophysiol; 1986 Nov 02; 56(5):1411-23. PubMed ID: 3794775
    [Abstract] [Full Text] [Related]

  • 20. Quantitative characterization and spinal pathway mediating inhibition of spinal nociceptive transmission from the lateral reticular nucleus in the rat.
    Janss AJ, Gebhart GF.
    J Neurophysiol; 1988 Jan 02; 59(1):226-47. PubMed ID: 2893831
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 36.