These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


173 related items for PubMed ID: 36559500

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field.
    Korniss G, White CJ, Rikvold PA, Novotny MA.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Dynamic phase transitions in the presence of quenched randomness.
    Vatansever E, Fytas NG.
    Phys Rev E; 2018 Jun; 97(6-1):062146. PubMed ID: 30011603
    [Abstract] [Full Text] [Related]

  • 5. Dynamic phase transition of the Blume-Capel model in an oscillating magnetic field.
    Vatansever E, Fytas NG.
    Phys Rev E; 2018 Jan; 97(1-1):012122. PubMed ID: 29448362
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Majority-vote model on spatially embedded networks: Crossover from mean-field to Ising universality classes.
    Sampaio Filho CI, Dos Santos TB, Moreira AA, Moreira FG, Andrade JS.
    Phys Rev E; 2016 May; 93(5):052101. PubMed ID: 27300824
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Ising universality in the two-dimensional Blume-Capel model with quenched random crystal field.
    Vatansever E, Vatansever ZD, Theodorakis PE, Fytas NG.
    Phys Rev E; 2020 Dec; 102(6-1):062138. PubMed ID: 33466068
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Universality of the local persistence exponent for models in the directed Ising class in one dimension.
    Shambharkar ND, Gade PM.
    Phys Rev E; 2019 Sep; 100(3-1):032119. PubMed ID: 31639921
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Chiral Ising Gross-Neveu Criticality of a Single Dirac Cone: A Quantum Monte Carlo Study.
    Tabatabaei SM, Negari AR, Maciejko J, Vaezi A.
    Phys Rev Lett; 2022 Jun 03; 128(22):225701. PubMed ID: 35714234
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.