These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
145 related items for PubMed ID: 36559514
1. Impurity reveals distinct operational phases in quantum thermodynamic cycles. Prakash A, Kumar A, Benjamin C. Phys Rev E; 2022 Nov; 106(5-1):054112. PubMed ID: 36559514 [Abstract] [Full Text] [Related]
2. Comparative study of quantum Otto and Carnot engines powered by a spin working substance. Abd-Rabbou MY, Rahman AU, Yurischev MA, Haddadi S. Phys Rev E; 2023 Sep; 108(3-1):034106. PubMed ID: 37849157 [Abstract] [Full Text] [Related]
3. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines. Mohanta S, Saha M, Venkatesh BP, Agarwalla BK. Phys Rev E; 2023 Jul; 108(1-1):014118. PubMed ID: 37583162 [Abstract] [Full Text] [Related]
4. Unified trade-off optimization of quantum harmonic Otto engine and refrigerator. Singh V, Singh S, Abah O, Müstecaplıoğlu ÖE. Phys Rev E; 2022 Aug; 106(2-1):024137. PubMed ID: 36110016 [Abstract] [Full Text] [Related]
5. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine. Xu YY, Chen B, Liu J. Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214 [Abstract] [Full Text] [Related]
6. Quantum thermodynamic cycles and quantum heat engines. Quan HT, Liu YX, Sun CP, Nori F. Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031105. PubMed ID: 17930197 [Abstract] [Full Text] [Related]
8. Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential. Xiao Y, Li K, He J, Wang J. Entropy (Basel); 2023 Mar 10; 25(3):. PubMed ID: 36981372 [Abstract] [Full Text] [Related]
9. Quantum mechanical bound for efficiency of quantum Otto heat engine. Park JM, Lee S, Chun HM, Noh JD. Phys Rev E; 2019 Jul 10; 100(1-1):012148. PubMed ID: 31499873 [Abstract] [Full Text] [Related]
10. Finite-power performance of quantum heat engines in linear response. Liu Q, He J, Ma Y, Wang J. Phys Rev E; 2019 Jul 10; 100(1-1):012105. PubMed ID: 31499858 [Abstract] [Full Text] [Related]
11. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases. Chen L, Meng Z, Ge Y, Wu F. Entropy (Basel); 2021 Apr 27; 23(5):. PubMed ID: 33925622 [Abstract] [Full Text] [Related]
12. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics. Johal RS, Mehta V. Entropy (Basel); 2021 Sep 01; 23(9):. PubMed ID: 34573774 [Abstract] [Full Text] [Related]
13. Performance of a quantum heat engine at strong reservoir coupling. Newman D, Mintert F, Nazir A. Phys Rev E; 2017 Mar 01; 95(3-1):032139. PubMed ID: 28415330 [Abstract] [Full Text] [Related]
14. Universal quantum Otto heat machine based on the Dicke model. Xu HG, Jin J, Neto GDM, de Almeida NG. Phys Rev E; 2024 Jan 01; 109(1-1):014122. PubMed ID: 38366433 [Abstract] [Full Text] [Related]
15. Optimal performance of a three-level quantum refrigerator. Singh V, Pandit T, Johal RS. Phys Rev E; 2020 Jun 01; 101(6-1):062121. PubMed ID: 32688608 [Abstract] [Full Text] [Related]
16. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir. Singh V, Müstecaplıoğlu ÖE. Phys Rev E; 2020 Dec 01; 102(6-1):062123. PubMed ID: 33466082 [Abstract] [Full Text] [Related]
17. Quantum Otto-type heat engine with fixed frequency. Matos RQ, de Assis RJ, de Almeida NG. Phys Rev E; 2023 Nov 01; 108(5-1):054131. PubMed ID: 38115429 [Abstract] [Full Text] [Related]
18. Finite-time performance of a quantum heat engine with a squeezed thermal bath. Wang J, He J, Ma Y. Phys Rev E; 2019 Nov 01; 100(5-1):052126. PubMed ID: 31870038 [Abstract] [Full Text] [Related]
19. Strongly coupled quantum Otto cycle with single qubit bath. Chakraborty S, Das A, Chruściński D. Phys Rev E; 2022 Dec 01; 106(6-1):064133. PubMed ID: 36671160 [Abstract] [Full Text] [Related]
20. Efficiency of Harmonic Quantum Otto Engines at Maximal Power. Deffner S. Entropy (Basel); 2018 Nov 15; 20(11):. PubMed ID: 33266599 [Abstract] [Full Text] [Related] Page: [Next] [New Search]