These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
180 related items for PubMed ID: 36566973
1. Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH. Xi Y, Xu H, Zhan T, Qin Y, Fan F, Zhang X. Metab Eng; 2023 Jan; 75():170-180. PubMed ID: 36566973 [Abstract] [Full Text] [Related]
2. Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli. Zhou L, Zhu Y, Yuan Z, Liu G, Sun Z, Du S, Liu H, Li Y, Liu H, Zhou Z. Appl Environ Microbiol; 2022 Sep 13; 88(17):e0097622. PubMed ID: 35980178 [Abstract] [Full Text] [Related]
3. l-Lactic Acid Production via Sustainable Neutralizer-Free Route by Engineering Acid-Tolerant Yeast Pichia kudriavzevii. Zhang B, Li R, Yu L, Wu C, Liu Z, Bai F, Yu B, Wang L. J Agric Food Chem; 2023 Jul 26; 71(29):11131-11140. PubMed ID: 37439413 [Abstract] [Full Text] [Related]
4. Highly efficient neutralizer-free l-malic acid production using engineered Saccharomyces cerevisiae. Sun L, Zhang Q, Kong X, Liu Y, Li J, Du G, Lv X, Ledesma-Amaro R, Chen J, Liu L. Bioresour Technol; 2023 Feb 26; 370():128580. PubMed ID: 36608859 [Abstract] [Full Text] [Related]
5. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21. Iverson A, Garza E, Manow R, Wang J, Gao Y, Grayburn S, Zhou S. BMC Syst Biol; 2016 Apr 16; 10():31. PubMed ID: 27083875 [Abstract] [Full Text] [Related]
6. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Zhu X, Tan Z, Xu H, Chen J, Tang J, Zhang X. Metab Eng; 2014 Jul 16; 24():87-96. PubMed ID: 24831708 [Abstract] [Full Text] [Related]
7. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production. Chen X, Wang Y, Dong X, Hu G, Liu L. Appl Microbiol Biotechnol; 2017 May 16; 101(10):4041-4052. PubMed ID: 28229207 [Abstract] [Full Text] [Related]
8. Engineering the reductive tricarboxylic acid pathway in Aureobasidium pullulans for enhanced biosynthesis of poly-L-malic acid. Qin Z, Feng J, Li Y, Zheng Y, Moore C, Yang ST. Bioresour Technol; 2024 Feb 16; 393():130122. PubMed ID: 38040309 [Abstract] [Full Text] [Related]
9. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR, Jensen NB, Schneider K, Czarnotta E, Özdemir E, Klein T, Maury J, Ebert BE, Christensen HB, Chen Y, Kim IK, Herrgård MJ, Blank LM, Forster J, Nielsen J, Borodina I. Microb Cell Fact; 2016 Mar 15; 15():53. PubMed ID: 26980206 [Abstract] [Full Text] [Related]
10. Metabolic engineering of Escherichia coli for L-malate production anaerobically. Jiang Y, Zheng T, Ye X, Xin F, Zhang W, Dong W, Ma J, Jiang M. Microb Cell Fact; 2020 Aug 18; 19(1):165. PubMed ID: 32811486 [Abstract] [Full Text] [Related]
11. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X. Microb Cell Fact; 2016 Aug 12; 15(1):141. PubMed ID: 27520031 [Abstract] [Full Text] [Related]
12. L-malic acid production from xylose by engineered Saccharomyces cerevisiae. Kang NK, Lee JW, Ort DR, Jin YS. Biotechnol J; 2022 Mar 12; 17(3):e2000431. PubMed ID: 34390209 [Abstract] [Full Text] [Related]
13. Low-pH production of d-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7. Park HJ, Bae JH, Ko HJ, Lee SH, Sung BH, Han JI, Sohn JH. Biotechnol Bioeng; 2018 Sep 12; 115(9):2232-2242. PubMed ID: 29896854 [Abstract] [Full Text] [Related]
14. Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae. Liu T, Sun L, Zhang C, Liu Y, Li J, Du G, Lv X, Liu L. Bioresour Technol; 2023 Jul 12; 379():129023. PubMed ID: 37028528 [Abstract] [Full Text] [Related]
15. An integrated yeast-based process for cis,cis-muconic acid production. Wang G, Tavares A, Schmitz S, França L, Almeida H, Cavalheiro J, Carolas A, Øzmerih S, Blank LM, Ferreira BS, Borodina I. Biotechnol Bioeng; 2022 Feb 12; 119(2):376-387. PubMed ID: 34786710 [Abstract] [Full Text] [Related]
16. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO. Biotechnol Bioeng; 2008 Dec 01; 101(5):881-93. PubMed ID: 18781696 [Abstract] [Full Text] [Related]
17. Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production. Sun W, Vila-Santa A, Liu N, Prozorov T, Xie D, Faria NT, Ferreira FC, Mira NP, Shao Z. Metab Eng Commun; 2020 Jun 01; 10():e00124. PubMed ID: 32346511 [Abstract] [Full Text] [Related]
18. Metabolic Engineering of Trichoderma reesei for l-Malic Acid Production. Chen Y, Han A, Wang M, Wei D, Wang W. J Agric Food Chem; 2023 Mar 08; 71(9):4043-4050. PubMed ID: 36812909 [Abstract] [Full Text] [Related]
19. Enhancing l-Malic Acid Production in Aspergillus niger via Natural Activation of sthA Gene Expression. Yang D, Xu Y, Mo L, Shi M, Wu N, Lu L, Xue F, Xu Q, Zhang C. J Agric Food Chem; 2024 Mar 06; 72(9):4869-4879. PubMed ID: 38407053 [Abstract] [Full Text] [Related]
20. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose. Luo ZW, Kim WJ, Lee SY. ACS Synth Biol; 2018 Sep 21; 7(9):2296-2307. PubMed ID: 30096230 [Abstract] [Full Text] [Related] Page: [Next] [New Search]