These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


344 related items for PubMed ID: 3657604

  • 1. Flow-dependent rheological properties of blood in capillaries.
    Secomb TW.
    Microvasc Res; 1987 Jul; 34(1):46-58. PubMed ID: 3657604
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER.
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Motion of red blood cells in capillaries with variable cross-sections.
    Secomb TW, Hsu R.
    J Biomech Eng; 1996 Nov; 118(4):538-44. PubMed ID: 8950658
    [Abstract] [Full Text] [Related]

  • 8. Red blood cell mechanics and functional capillary density.
    Secomb TW, Hsu R.
    Int J Microcirc Clin Exp; 1995 Nov; 15(5):250-254. PubMed ID: 8852623
    [Abstract] [Full Text] [Related]

  • 9. Dynamics of blood flow: modeling of Fåhraeus and Fåhraeus-Lindqvist effects using a shear-induced red blood cell migration model.
    Chebbi R.
    J Biol Phys; 2018 Dec; 44(4):591-603. PubMed ID: 30219980
    [Abstract] [Full Text] [Related]

  • 10. A mathematical model of the flow of blood cells in fine capillaries.
    Ducharme R, Kapadia P, Dowden J.
    J Biomech; 1991 Dec; 24(5):299-306. PubMed ID: 2050706
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Dynamical clustering of red blood cells in capillary vessels.
    Boryczko K, Dzwinel W, Yuen DA.
    J Mol Model; 2003 Feb; 9(1):16-33. PubMed ID: 12638008
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Rheological properties of blood and their possible role in the circulation and development of intracranial hemorrhage in preterm infants.
    Linderkamp O, Betke K.
    Klin Padiatr; 1985 Feb; 197(4):319-21. PubMed ID: 4046488
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Motion of nonaxisymmetric red blood cells in cylindrical capillaries.
    Hsu R, Secomb TW.
    J Biomech Eng; 1989 May; 111(2):147-51. PubMed ID: 2733409
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Blood flow in capillary tubes: curvature and gravity effects.
    Hung TC, Hung TK, Bugliarello G.
    Biorheology; 1980 May; 17(4):331-42. PubMed ID: 7260345
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis.
    Sun C, Munn LL.
    Biophys J; 2005 Mar; 88(3):1635-45. PubMed ID: 15613630
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.