These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 36599049

  • 1. A Realistic Evaluation of Methods for Handling Missing Data When There is a Mixture of MCAR, MAR, and MNAR Mechanisms in the Same Dataset.
    Gomer B, Yuan KH.
    Multivariate Behav Res; 2023; 58(5):988-1013. PubMed ID: 36599049
    [Abstract] [Full Text] [Related]

  • 2. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study.
    Marshall A, Altman DG, Royston P, Holder RL.
    BMC Med Res Methodol; 2010 Jan 19; 10():7. PubMed ID: 20085642
    [Abstract] [Full Text] [Related]

  • 3. Heckman imputation models for binary or continuous MNAR outcomes and MAR predictors.
    Galimard JE, Chevret S, Curis E, Resche-Rigon M.
    BMC Med Res Methodol; 2018 Aug 31; 18(1):90. PubMed ID: 30170561
    [Abstract] [Full Text] [Related]

  • 4. A Bayesian Latent Variable Selection Model for Nonignorable Missingness.
    Du H, Enders C, Keller BT, Bradbury TN, Karney BR.
    Multivariate Behav Res; 2022 Aug 31; 57(2-3):478-512. PubMed ID: 33529056
    [Abstract] [Full Text] [Related]

  • 5. A hybrid return to baseline imputation method to incorporate MAR and MNAR dropout missingness.
    Jin M.
    Contemp Clin Trials; 2022 Sep 31; 120():106859. PubMed ID: 35872135
    [Abstract] [Full Text] [Related]

  • 6. Imputation of missing covariate in randomized controlled trials with a continuous outcome: Scoping review and new results.
    Kayembe MT, Jolani S, Tan FES, van Breukelen GJP.
    Pharm Stat; 2020 Nov 31; 19(6):840-860. PubMed ID: 32510791
    [Abstract] [Full Text] [Related]

  • 7. BayesMetab: treatment of missing values in metabolomic studies using a Bayesian modeling approach.
    Shah J, Brock GN, Gaskins J.
    BMC Bioinformatics; 2019 Dec 20; 20(Suppl 24):673. PubMed ID: 31861984
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Do the methods used to analyse missing data really matter? An examination of data from an observational study of Intermediate Care patients.
    Kaambwa B, Bryan S, Billingham L.
    BMC Res Notes; 2012 Jun 27; 5():330. PubMed ID: 22738344
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Maximum likelihood versus multiple imputation for missing data in small longitudinal samples with nonnormality.
    Shin T, Davison ML, Long JD.
    Psychol Methods; 2017 Sep 27; 22(3):426-449. PubMed ID: 27709974
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Outcome-sensitive multiple imputation: a simulation study.
    Kontopantelis E, White IR, Sperrin M, Buchan I.
    BMC Med Res Methodol; 2017 Jan 09; 17(1):2. PubMed ID: 28068910
    [Abstract] [Full Text] [Related]

  • 16. Mechanism-aware imputation: a two-step approach in handling missing values in metabolomics.
    Dekermanjian JP, Shaddox E, Nandy D, Ghosh D, Kechris K.
    BMC Bioinformatics; 2022 May 16; 23(1):179. PubMed ID: 35578165
    [Abstract] [Full Text] [Related]

  • 17. Imputation and missing indicators for handling missing data in the development and deployment of clinical prediction models: A simulation study.
    Sisk R, Sperrin M, Peek N, van Smeden M, Martin GP.
    Stat Methods Med Res; 2023 Aug 16; 32(8):1461-1477. PubMed ID: 37105540
    [Abstract] [Full Text] [Related]

  • 18. Identify the most appropriate imputation method for handling missing values in clinical structured datasets: a systematic review.
    Afkanpour M, Hosseinzadeh E, Tabesh H.
    BMC Med Res Methodol; 2024 Aug 28; 24(1):188. PubMed ID: 39198744
    [Abstract] [Full Text] [Related]

  • 19. A Two-Step Approach for Analysis of Nonignorable Missing Outcomes in Longitudinal Regression: an Application to Upstate KIDS Study.
    Liu D, Yeung EH, McLain AC, Xie Y, Buck Louis GM, Sundaram R.
    Paediatr Perinat Epidemiol; 2017 Sep 28; 31(5):468-478. PubMed ID: 28767145
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.