These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


149 related items for PubMed ID: 36608859

  • 1. Highly efficient neutralizer-free l-malic acid production using engineered Saccharomyces cerevisiae.
    Sun L, Zhang Q, Kong X, Liu Y, Li J, Du G, Lv X, Ledesma-Amaro R, Chen J, Liu L.
    Bioresour Technol; 2023 Feb; 370():128580. PubMed ID: 36608859
    [Abstract] [Full Text] [Related]

  • 2. L-malic acid production from xylose by engineered Saccharomyces cerevisiae.
    Kang NK, Lee JW, Ort DR, Jin YS.
    Biotechnol J; 2022 Mar; 17(3):e2000431. PubMed ID: 34390209
    [Abstract] [Full Text] [Related]

  • 3. [Construction and fermentation control of reductive TCA pathway for malic acid production in Saccharomyces cerevisiae].
    Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J.
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1484-93. PubMed ID: 24432663
    [Abstract] [Full Text] [Related]

  • 4. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production.
    Chen X, Wang Y, Dong X, Hu G, Liu L.
    Appl Microbiol Biotechnol; 2017 May; 101(10):4041-4052. PubMed ID: 28229207
    [Abstract] [Full Text] [Related]

  • 5. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export.
    Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JM, van Dijken JP, Pronk JT, van Maris AJ.
    Appl Environ Microbiol; 2008 May; 74(9):2766-77. PubMed ID: 18344340
    [Abstract] [Full Text] [Related]

  • 6. Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH.
    Xi Y, Xu H, Zhan T, Qin Y, Fan F, Zhang X.
    Metab Eng; 2023 Jan; 75():170-180. PubMed ID: 36566973
    [Abstract] [Full Text] [Related]

  • 7. Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae.
    Pines O, Shemesh S, Battat E, Goldberg I.
    Appl Microbiol Biotechnol; 1997 Aug; 48(2):248-55. PubMed ID: 9299784
    [Abstract] [Full Text] [Related]

  • 8. Metabolic Engineering of Trichoderma reesei for l-Malic Acid Production.
    Chen Y, Han A, Wang M, Wei D, Wang W.
    J Agric Food Chem; 2023 Mar 08; 71(9):4043-4050. PubMed ID: 36812909
    [Abstract] [Full Text] [Related]

  • 9. Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae.
    Liu T, Sun L, Zhang C, Liu Y, Li J, Du G, Lv X, Liu L.
    Bioresour Technol; 2023 Jul 08; 379():129023. PubMed ID: 37028528
    [Abstract] [Full Text] [Related]

  • 10. Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains.
    Zelle RM, Harrison JC, Pronk JT, van Maris AJ.
    Appl Environ Microbiol; 2011 Feb 08; 77(3):732-8. PubMed ID: 21131518
    [Abstract] [Full Text] [Related]

  • 11. l-Lactic Acid Production via Sustainable Neutralizer-Free Route by Engineering Acid-Tolerant Yeast Pichia kudriavzevii.
    Zhang B, Li R, Yu L, Wu C, Liu Z, Bai F, Yu B, Wang L.
    J Agric Food Chem; 2023 Jul 26; 71(29):11131-11140. PubMed ID: 37439413
    [Abstract] [Full Text] [Related]

  • 12. Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass.
    Deng Y, Mao Y, Zhang X.
    Biotechnol Prog; 2016 Jul 26; 32(1):14-20. PubMed ID: 26439318
    [Abstract] [Full Text] [Related]

  • 13. Constructing recombinant Saccharomyces cerevisiae strains for malic-to-fumaric acid conversion.
    Steyn A, Viljoen-Bloom M, Van Zyl WH.
    FEMS Microbiol Lett; 2023 Jan 17; 370():. PubMed ID: 36646426
    [Abstract] [Full Text] [Related]

  • 14. Engineering pathways for malate degradation in Saccharomyces cerevisiae.
    Volschenk H, Viljoen M, Grobler J, Petzold B, Bauer F, Subden RE, Young RA, Lonvaud A, Denayrolles M, van Vuuren HJ.
    Nat Biotechnol; 1997 Mar 17; 15(3):253-7. PubMed ID: 9062925
    [Abstract] [Full Text] [Related]

  • 15. Variations in mitochondrial membrane potential correlate with malic acid production by natural isolates of Saccharomyces cerevisiae sake strains.
    Oba T, Kusumoto K, Kichise Y, Izumoto E, Nakayama S, Tashiro K, Kuhara S, Kitagaki H.
    FEMS Yeast Res; 2014 Aug 17; 14(5):789-96. PubMed ID: 24889034
    [Abstract] [Full Text] [Related]

  • 16. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid.
    Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A.
    Appl Microbiol Biotechnol; 2013 Oct 17; 97(20):8903-12. PubMed ID: 23925533
    [Abstract] [Full Text] [Related]

  • 17. Engineering the metabolism and morphology of the filamentous fungus Trichoderma reesei for efficient L-malic acid production.
    Chen Y, Wang J, Wang M, Han A, Zhao X, Wang W, Wei D.
    Bioresour Technol; 2023 Nov 17; 387():129629. PubMed ID: 37558099
    [Abstract] [Full Text] [Related]

  • 18. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae.
    Volschenk H, Viljoen-Bloom M, Subden RE, van Vuuren HJ.
    Yeast; 2001 Jul 17; 18(10):963-70. PubMed ID: 11447602
    [Abstract] [Full Text] [Related]

  • 19. Influence of pH, malic acid and glucose concentrations on malic acid consumption by Saccharomyces cerevisiae.
    Delcourt F, Taillandier P, Vidal F, Strehaiano P.
    Appl Microbiol Biotechnol; 1995 Jul 17; 43(2):321-4. PubMed ID: 7612251
    [Abstract] [Full Text] [Related]

  • 20. Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae.
    Camarasa C, Bidard F, Bony M, Barre P, Dequin S.
    Appl Environ Microbiol; 2001 Sep 17; 67(9):4144-51. PubMed ID: 11526017
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.