These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


240 related items for PubMed ID: 36613690

  • 21. Integrative Analysis of the Transcriptome and Metabolome Reveals the Developmental Mechanisms and Metabolite Biosynthesis of the Tuberous Roots of Tetrastigma hemsleyanum.
    Hang S, Xu P, Zhu S, Ye M, Chen C, Wu X, Liang W, Pu J.
    Molecules; 2023 Mar 13; 28(6):. PubMed ID: 36985574
    [Abstract] [Full Text] [Related]

  • 22. Potential functions of microRNAs in starch metabolism and development revealed by miRNA transcriptome profiling of cassava cultivars and their wild progenitor.
    Chen X, Xia J, Xia Z, Zhang H, Zeng C, Lu C, Zhang W, Wang W.
    BMC Plant Biol; 2015 Feb 04; 15():33. PubMed ID: 25648603
    [Abstract] [Full Text] [Related]

  • 23. Knockdown of p-Coumaroyl Shikimate/Quinate 3'-Hydroxylase Delays the Occurrence of Post-Harvest Physiological Deterioration in Cassava Storage Roots.
    Ma Q, Xu J, Feng Y, Wu X, Lu X, Zhang P.
    Int J Mol Sci; 2022 Aug 17; 23(16):. PubMed ID: 36012496
    [Abstract] [Full Text] [Related]

  • 24. Comparative physiology and transcriptome response patterns in cold-tolerant and cold-sensitive varieties of Solanum melongena.
    Cai P, Lan Y, Gong F, Li C, Xia F, Li Y, Fang C.
    BMC Plant Biol; 2024 Apr 09; 24(1):256. PubMed ID: 38594627
    [Abstract] [Full Text] [Related]

  • 25. Cassava root membrane proteome reveals activities during storage root maturation.
    Naconsie M, Lertpanyasampatha M, Viboonjun U, Netrphan S, Kuwano M, Ogasawara N, Narangajavana J.
    J Plant Res; 2016 Jan 09; 129(1):51-65. PubMed ID: 26547558
    [Abstract] [Full Text] [Related]

  • 26. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.
    Pal T, Malhotra N, Chanumolu SK, Chauhan RS.
    Planta; 2015 Jul 09; 242(1):239-58. PubMed ID: 25904478
    [Abstract] [Full Text] [Related]

  • 27. Suppressed expression of starch branching enzyme 1 and 2 increases resistant starch and amylose content and modifies amylopectin structure in cassava.
    Utsumi Y, Utsumi C, Tanaka M, Takahashi S, Okamoto Y, Ono M, Nakamura Y, Seki M.
    Plant Mol Biol; 2022 Mar 09; 108(4-5):413-427. PubMed ID: 34767147
    [Abstract] [Full Text] [Related]

  • 28. Trehalose metabolism coordinates transcriptional regulatory control and metabolic requirements to trigger the onset of cassava storage root initiation.
    Sukko N, Kalapanulak S, Saithong T.
    Sci Rep; 2023 Nov 15; 13(1):19973. PubMed ID: 37968317
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots.
    Rüscher D, Corral JM, Carluccio AV, Klemens PAW, Gisel A, Stavolone L, Neuhaus HE, Ludewig F, Sonnewald U, Zierer W.
    J Exp Bot; 2021 May 04; 72(10):3688-3703. PubMed ID: 33712830
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration.
    Uarrota VG, Moresco R, Schmidt EC, Bouzon ZL, Nunes Eda C, Neubert Ede O, Peruch LA, Rocha M, Maraschin M.
    Food Chem; 2016 Apr 15; 197(Pt A):737-46. PubMed ID: 26617011
    [Abstract] [Full Text] [Related]

  • 35. Transcriptome profiling of sweetpotato tuberous roots during low temperature storage.
    Ji CY, Chung WH, Kim HS, Jung WY, Kang L, Jeong JC, Kwak SS.
    Plant Physiol Biochem; 2017 Mar 15; 112():97-108. PubMed ID: 28056396
    [Abstract] [Full Text] [Related]

  • 36. Hydrogen peroxide and flavan-3-ols in storage roots of cassava (Manihot esculenta crantz) during postharvest deterioration.
    Buschmann H, Reilly K, Rodriguez MX, Tohme J, Beeching JR.
    J Agric Food Chem; 2000 Nov 15; 48(11):5522-9. PubMed ID: 11087513
    [Abstract] [Full Text] [Related]

  • 37. Integrative physiological, transcriptome and metabolome analysis reveals the involvement of carbon and flavonoid biosynthesis in low phosphorus tolerance in cotton.
    Iqbal A, Qiang D, Xiangru W, Huiping G, Hengheng Z, Xiling Z, Meizhen S.
    Plant Physiol Biochem; 2023 Mar 15; 196():302-317. PubMed ID: 36738510
    [Abstract] [Full Text] [Related]

  • 38. Character changes and Transcriptomic analysis of a cassava sexual Tetraploid.
    Chen X, Lai H, Li R, Yao Y, Liu J, Yuan S, Fu S, Hu X, Guo J.
    BMC Plant Biol; 2021 Apr 19; 21(1):188. PubMed ID: 33874893
    [Abstract] [Full Text] [Related]

  • 39. Characters related to higher starch accumulation in cassava storage roots.
    Li YZ, Zhao JY, Wu SM, Fan XW, Luo XL, Chen BS.
    Sci Rep; 2016 Feb 19; 6():19823. PubMed ID: 26892156
    [Abstract] [Full Text] [Related]

  • 40. Large-Scale Proteomics of the Cassava Storage Root and Identification of a Target Gene to Reduce Postharvest Deterioration.
    Vanderschuren H, Nyaboga E, Poon JS, Baerenfaller K, Grossmann J, Hirsch-Hoffmann M, Kirchgessner N, Nanni P, Gruissem W.
    Plant Cell; 2014 May 19; 26(5):1913-1924. PubMed ID: 24876255
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.