These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


217 related items for PubMed ID: 36616338

  • 21. Duckweed-associated bacteria as plant growth-promotor to enhance growth of Spirodela polyrhiza in wastewater effluent from a poultry farm.
    Boonmak C, Kettongruang S, Buranathong B, Morikawa M, Duangmal K.
    Arch Microbiol; 2023 Dec 26; 206(1):43. PubMed ID: 38148332
    [Abstract] [Full Text] [Related]

  • 22. Enhancing biomass production and biochemical compositions of Spirodela polyrhiza through superhydrophobic cultivation platforms at low light intensity.
    Chua MX, Saravanan G, Cheah YT, Chan DJC.
    Plant Physiol Biochem; 2024 Mar 26; 208():108485. PubMed ID: 38461755
    [Abstract] [Full Text] [Related]

  • 23. Intraspecific Diversity in Aquatic Ecosystems: Comparison between Spirodela polyrhiza and Lemna minor in Natural Populations of Duckweed.
    Bog M, Appenroth KJ, Schneider P, Sree KS.
    Plants (Basel); 2022 Apr 01; 11(7):. PubMed ID: 35406948
    [Abstract] [Full Text] [Related]

  • 24. Transcriptome analysis reveals genes expression pattern of Spirodela polyrhiza response to heat stress.
    Shang S, Zhang Z, Li L, Chen J, Zang Y, Liu X, Wang J, Tang X.
    Int J Biol Macromol; 2023 Jan 15; 225():767-775. PubMed ID: 36403776
    [Abstract] [Full Text] [Related]

  • 25. Physiological responses and transcriptome analysis of Spirodela polyrhiza under red, blue, and white light.
    Zhong Y, Wang L, Ma Z, Du X.
    Planta; 2021 Dec 02; 255(1):11. PubMed ID: 34855030
    [Abstract] [Full Text] [Related]

  • 26. Identification, Phylogeny, and Comparative Expression of the Lipoxygenase Gene Family of the Aquatic Duckweed, Spirodela polyrhiza, during Growth and in Response to Methyl Jasmonate and Salt.
    Upadhyay RK, Edelman M, Mattoo AK.
    Int J Mol Sci; 2020 Dec 15; 21(24):. PubMed ID: 33333747
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia.
    Hoang PTN, Schubert I.
    Chromosoma; 2017 Dec 15; 126(6):729-739. PubMed ID: 28756515
    [Abstract] [Full Text] [Related]

  • 29. The accumulation, transformation, and effects of quinestrol in duckweed (Spirodela polyrhiza L.).
    Geng Q, Li T, Li P, Wang X, Chu W, Ma Y, Ma H, Ni H.
    Sci Total Environ; 2018 Sep 01; 634():1034-1041. PubMed ID: 29660861
    [Abstract] [Full Text] [Related]

  • 30. Metabolic flexibility during a trophic transition reveals the phenotypic plasticity of greater duckweed (Spirodela polyrhiza 7498).
    Sun Z, Zhao X, Li G, Yang J, Chen Y, Xia M, Hwang I, Hou H.
    New Phytol; 2023 May 01; 238(4):1386-1402. PubMed ID: 36856336
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. In silico analysis of glycosyltransferase 2 family genes in duckweed (Spirodela polyrhiza) and its role in salt stress tolerance.
    Jiang M, Wang P, Xu L, Ye X, Fan H, Cheng J, Chen J.
    Open Life Sci; 2021 May 01; 16(1):583-593. PubMed ID: 34179502
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Elucidating physiological and biochemical alterations in giant duckweed (Spirodela polyrhiza L. Schleiden) under diethyl phthalate stress: insights into antioxidant defence system.
    Sharma R, Kaur R.
    PeerJ; 2020 May 01; 8():e8267. PubMed ID: 31942254
    [Abstract] [Full Text] [Related]

  • 35. Cadmium removal by Lemna minor and Spirodela polyrhiza.
    Chaudhuri D, Majumder A, Misra AK, Bandyopadhyay K.
    Int J Phytoremediation; 2014 May 01; 16(7-12):1119-32. PubMed ID: 24933906
    [Abstract] [Full Text] [Related]

  • 36. The "Duckweed Dip": Aquatic Spirodela polyrhiza Plants Can Efficiently Uptake Dissolved, DNA-Wrapped Carbon Nanotubes from Their Environment for Transient Gene Expression.
    Islam T, Kalkar S, Tinker-Kulberg R, Ignatova T, Josephs EA.
    bioRxiv; 2023 Aug 22. PubMed ID: 37662322
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Genome-wide discovery and functional prediction of salt-responsive lncRNAs in duckweed.
    Fu L, Ding Z, Tan D, Han B, Sun X, Zhang J.
    BMC Genomics; 2020 Mar 05; 21(1):212. PubMed ID: 32138656
    [Abstract] [Full Text] [Related]

  • 39. Physiological and Transcriptomic Analysis Reveals Distorted Ion Homeostasis and Responses in the Freshwater Plant Spirodela polyrhiza L. under Salt Stress.
    Fu L, Ding Z, Sun X, Zhang J.
    Genes (Basel); 2019 Sep 24; 10(10):. PubMed ID: 31554307
    [Abstract] [Full Text] [Related]

  • 40. A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula.
    Straub D, Ludewig U, Neuhäuser B.
    Plant Mol Biol; 2014 Nov 24; 86(4-5):485-94. PubMed ID: 25164101
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.