These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China. Jiang F, Deng M, Tang J, Fu L, Sun H. Carbon Balance Manag; 2022 Sep 01; 17(1):12. PubMed ID: 36048352 [Abstract] [Full Text] [Related]
5. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Urbazaev M, Thiel C, Cremer F, Dubayah R, Migliavacca M, Reichstein M, Schmullius C. Carbon Balance Manag; 2018 Feb 21; 13(1):5. PubMed ID: 29468474 [Abstract] [Full Text] [Related]
7. Forest degradation and biomass loss along the Chocó region of Colombia. Meyer V, Saatchi S, Ferraz A, Xu L, Duque A, García M, Chave J. Carbon Balance Manag; 2019 Mar 23; 14(1):2. PubMed ID: 30904964 [Abstract] [Full Text] [Related]
11. Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR. Garcia M, Saatchi S, Ferraz A, Silva CA, Ustin S, Koltunov A, Balzter H. Carbon Balance Manag; 2017 Dec 23; 12(1):4. PubMed ID: 28413848 [Abstract] [Full Text] [Related]
12. Mapping tropical forest aboveground biomass using airborne SAR tomography. Ramachandran N, Saatchi S, Tebaldini S, d'Alessandro MM, Dikshit O. Sci Rep; 2023 Apr 17; 13(1):6233. PubMed ID: 37069184 [Abstract] [Full Text] [Related]
13. Estimating the aboveground biomass of coniferous forest in Northeast China using spectral variables, land surface temperature and soil moisture. Jiang F, Kutia M, Ma K, Chen S, Long J, Sun H. Sci Total Environ; 2021 Sep 01; 785():147335. PubMed ID: 33933773 [Abstract] [Full Text] [Related]
14. A novel approach for estimation of aboveground biomass of a carbon-rich mangrove site in India. Ghosh SM, Behera MD, Jagadish B, Das AK, Mishra DR. J Environ Manage; 2021 Aug 15; 292():112816. PubMed ID: 34030019 [Abstract] [Full Text] [Related]
15. Estimation of Rice Aboveground Biomass by Combining Canopy Spectral Reflectance and Unmanned Aerial Vehicle-Based Red Green Blue Imagery Data. Wang Z, Ma Y, Chen P, Yang Y, Fu H, Yang F, Raza MA, Guo C, Shu C, Sun Y, Yang Z, Chen Z, Ma J. Front Plant Sci; 2022 Aug 15; 13():903643. PubMed ID: 35712565 [Abstract] [Full Text] [Related]
17. Optimizing biomass estimates of savanna woodland at different spatial scales in the Brazilian Cerrado: Re-evaluating allometric equations and environmental influences. Roitman I, Bustamante MMC, Haidar RF, Shimbo JZ, Abdala GC, Eiten G, Fagg CW, Felfili MC, Felfili JM, Jacobson TKB, Lindoso GS, Keller M, Lenza E, Miranda SC, Pinto JRR, Rodrigues AA, Delitti WBC, Roitman P, Sampaio JM. PLoS One; 2018 Aug 15; 13(8):e0196742. PubMed ID: 30067735 [Abstract] [Full Text] [Related]
18. Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS. Wulder MA, White JC, Fournier RA, Luther JE, Magnussen S. Sensors (Basel); 2008 Jan 24; 8(1):529-560. PubMed ID: 27879721 [Abstract] [Full Text] [Related]
19. UAV and Satellite Synergies for Mapping Grassland Aboveground Biomass in Hulunbuir Meadow Steppe. Zhu X, Chen X, Ma L, Liu W. Plants (Basel); 2024 Mar 31; 13(7):. PubMed ID: 38611535 [Abstract] [Full Text] [Related]