These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 3663667
1. Interaction of spectrin with phospholipids. Quenching of spectrin intrinsic fluorescence by phospholipid suspensions. Sikorski AF, Michalak K, Bobrowska M. Biochim Biophys Acta; 1987 Nov 02; 904(1):55-60. PubMed ID: 3663667 [Abstract] [Full Text] [Related]
2. Interaction of bovine erythrocyte spectrin with aminophospholipid liposomes. Michalak K, Bobrowska M, Sikorski AF. Gen Physiol Biophys; 1993 Apr 02; 12(2):163-70. PubMed ID: 8405919 [Abstract] [Full Text] [Related]
3. Interaction of erythrocyte spectrin with some nonbilayer phospholipids. Michalak K, Bobrowska M, Białkowska K, Szopa J, Sikorski AF. Gen Physiol Biophys; 1994 Feb 02; 13(1):57-62. PubMed ID: 8088502 [Abstract] [Full Text] [Related]
4. Brain spectrin (fodrin) interacts with phospholipids as revealed by intrinsic fluorescence quenching and monolayer experiments. Diakowski W, Prychidny A, Swistak M, Nietubyć M, Białkowska K, Szopa J, Sikorski AF. Biochem J; 1999 Feb 15; 338 ( Pt 1)(Pt 1):83-90. PubMed ID: 9931302 [Abstract] [Full Text] [Related]
5. The interaction of phospholipid membranes and detergents with glutamate dehydrogenase. Nemat-Gorgani M, Dodd G. Eur J Biochem; 1977 Mar 15; 74(1):139-47. PubMed ID: 15832 [Abstract] [Full Text] [Related]
11. Investigation of spectrin binding to phospholipid vesicles using isoindole fluorescent probe. Thermal properties of the bound and unbound protein. Michalak K, Bobrowska M, Sikorski AF. Gen Physiol Biophys; 1990 Dec 18; 9(6):615-24. PubMed ID: 2079201 [Abstract] [Full Text] [Related]
12. Proteolysis of spectrin by trypsin and pronase in the presence of phospholipid suspensions. Sikorski AF, Kozubek A, Szopa J. Acta Biochim Pol; 1988 Dec 18; 35(2):71-81. PubMed ID: 3232464 [Abstract] [Full Text] [Related]
13. Salt and temperature-dependent conformation changes in spectrin from human erythrocyte membranes. Ralston GB, Dunbar JC. Biochim Biophys Acta; 1979 Jul 25; 579(1):20-30. PubMed ID: 465530 [Abstract] [Full Text] [Related]
14. [Thermal stability of erythrocyte membrane proteins at varying ionic strength and media composition]. Lapshina EA, Zavodnik IB. Biofizika; 1994 Jul 25; 39(6):1015-20. PubMed ID: 7873620 [Abstract] [Full Text] [Related]
15. Spectroscopic characterization of vesicle formation on heated human erythrocytes and the influence of the antiviral agent amantadine. Herrmann A, Lentzsch P, Lassmann G, Ladhoff AM, Donath E. Biochim Biophys Acta; 1985 Jan 10; 812(1):277-85. PubMed ID: 2981546 [Abstract] [Full Text] [Related]
16. Membrane properties modulate the activity of a phosphatidylinositol transfer protein from the yeast, Saccharomyces cerevisiae. Szolderits G, Hermetter A, Paltauf F, Daum G. Biochim Biophys Acta; 1989 Nov 27; 986(2):301-9. PubMed ID: 2686754 [Abstract] [Full Text] [Related]
17. The influence of the chain length of aldehydes on the fluorescence of chromolipids. Montfoort A, Bezstarosti K, Groh MM, Koster JF. FEBS Lett; 1987 Dec 21; 226(1):101-4. PubMed ID: 3691810 [Abstract] [Full Text] [Related]
18. Effect of ionic strength on the organization and dynamics of tryptophan residues in erythroid spectrin: a fluorescence approach. Kelkar DA, Chattopadhyay A, Chakrabarti A, Bhattacharyya M. Biopolymers; 2005 Apr 15; 77(6):325-34. PubMed ID: 15648086 [Abstract] [Full Text] [Related]
20. The modulation of protein kinase C activity by membrane lipid bilayer structure. Slater SJ, Kelly MB, Taddeo FJ, Ho C, Rubin E, Stubbs CD. J Biol Chem; 1994 Feb 18; 269(7):4866-71. PubMed ID: 7508929 [Abstract] [Full Text] [Related] Page: [Next] [New Search]