These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
283 related items for PubMed ID: 36638065
1. Ni, Co, and Yb Cation Co-doping and Defect Engineering of FeOOH Nanorods as an Electrocatalyst for the Oxygen Evolution Reaction. Ouyang Q, Cheng S, Yang C, Lei Z. Inorg Chem; 2023 Jan 30; 62(4):1719-1727. PubMed ID: 36638065 [Abstract] [Full Text] [Related]
3. Ru/Rh Cation Doping and Oxygen-Vacancy Engineering of FeOOH Nanoarrays@Ti3 C2 Tx MXene Heterojunction for Highly Efficient and Stable Electrocatalytic Oxygen Evolution. Zhang B, Shan J, Wang X, Hu Y, Li Y. Small; 2022 Jun 30; 18(25):e2200173. PubMed ID: 35567328 [Abstract] [Full Text] [Related]
5. Loading FeOOH on Ni(OH)2 hollow nanorods to obtain a three-dimensional sandwich catalyst with strong electron interactions for an efficient oxygen evolution reaction. Guo W, Li D, Zhong D, Chen S, Hao G, Liu G, Li J, Zhao Q. Nanoscale; 2020 Jan 02; 12(2):983-990. PubMed ID: 31840705 [Abstract] [Full Text] [Related]
6. Operando spectroscopies capturing surface reconstruction and interfacial electronic regulation by FeOOH@Fe2O3@Ni(OH)2 heterostructures for robust oxygen evolution reaction. Tang M, Liu X, Ali A, He Y, Shen P, Ouyang Y. J Colloid Interface Sci; 2023 Apr 15; 636():501-511. PubMed ID: 36652825 [Abstract] [Full Text] [Related]
7. Impact of morphology and oxygen vacancy content in Ni, Fe co-doped ceria for efficient electrocatalyst based water splitting. Mishra AK, Willoughby J, Estes SL, Kohler KC, Brinkman KS. Nanoscale Adv; 2024 Sep 10; 6(18):4672-4682. PubMed ID: 39263402 [Abstract] [Full Text] [Related]
10. Unveiling active sites in FeOOH nanorods@NiOOH nanosheets heterojunction for superior OER and HER electrocatalysis in water splitting. Hua S, Shah SA, Nsang GEO, Sayyar R, Ullah B, Ullah N, Khan N, Yuan A, Bin Mohd Yusoff AR, Ullah H. J Colloid Interface Sci; 2025 Feb 10; 679(Pt A):487-495. PubMed ID: 39374558 [Abstract] [Full Text] [Related]
12. Arousing the Reactive Fe Sites in Pyrite (FeS2) via Integration of Electronic Structure Reconfiguration and in Situ Electrochemical Topotactic Transformation for Highly Efficient Oxygen Evolution Reaction. Tan Z, Sharma L, Kakkar R, Meng T, Jiang Y, Cao M. Inorg Chem; 2019 Jun 03; 58(11):7615-7627. PubMed ID: 31074996 [Abstract] [Full Text] [Related]
13. Tuning the Surface Electronic Structure of Amorphous NiWO4 by Doping Fe as an Electrocatalyst for OER. N Dhandapani H, Madhu R, De A, Salem MA, Ramesh Babu B, Kundu S. Inorg Chem; 2023 Jul 31; 62(30):11817-11828. PubMed ID: 37437220 [Abstract] [Full Text] [Related]
14. Se-Doping Activates FeOOH for Cost-Effective and Efficient Electrochemical Water Oxidation. Niu S, Jiang WJ, Wei Z, Tang T, Ma J, Hu JS, Wan LJ. J Am Chem Soc; 2019 May 01; 141(17):7005-7013. PubMed ID: 30933480 [Abstract] [Full Text] [Related]
15. Low-Temperature Plasma-Constructed Ni-Doped W18O49 Nanorod Arrays for Enhanced Electrocatalytic Oxygen Evolution and Urea Oxidation. Ruan Q, Liu J, Li D, Zhang X, Liu L, Huang C, Wang B, Chu PK. ACS Appl Mater Interfaces; 2024 Jul 31; 16(30):39266-39276. PubMed ID: 39037038 [Abstract] [Full Text] [Related]
16. Rational Design of Molybdenum-Doped Cobalt Nitride Nanowire Arrays for Robust Overall Water Splitting. Huang W, Tong Y, Feng D, Guo Z, Ye R, Chen P. ChemSusChem; 2023 May 19; 16(10):e202202078. PubMed ID: 36750745 [Abstract] [Full Text] [Related]
19. Efficient electrocatalytic water splitting by bimetallic cobalt iron boride nanoparticles with controlled electronic structure. Qiang C, Zhang L, He H, Liu Y, Zhao Y, Sheng T, Liu S, Wu X, Fang Z. J Colloid Interface Sci; 2021 Dec 15; 604():650-659. PubMed ID: 34280763 [Abstract] [Full Text] [Related]
20. Hierarchical Fe-doped Ni3Se4 ultrathin nanosheets as an efficient electrocatalyst for oxygen evolution reaction. Du J, Zou Z, Liu C, Xu C. Nanoscale; 2018 Mar 15; 10(11):5163-5170. PubMed ID: 29492488 [Abstract] [Full Text] [Related] Page: [Next] [New Search]