These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


242 related items for PubMed ID: 36642146

  • 1. Cysteamine-decorated gold nanoparticles for plasmon-based colorimetric on-site sensors for detecting cyanide ions using the smart-phone color ratio and for catalytic reduction of 4-nitrophenol.
    Rajamanikandan R, Shanmugaraj K, Ilanchelian M, Ju H.
    Chemosphere; 2023 Mar; 316():137836. PubMed ID: 36642146
    [Abstract] [Full Text] [Related]

  • 2. Smartphone-enabled colorimetric visual quantification of highly hazardous trivalent chromium ions in environmental waters and catalytic reduction of p-nitroaniline by thiol-functionalized gold nanoparticles.
    Rajamanikandan R, Ilanchelian M, Ju H.
    Chemosphere; 2023 Nov; 340():139838. PubMed ID: 37598944
    [Abstract] [Full Text] [Related]

  • 3. Colorimetric detection for uranyl ions in water using vinylphosphonic acid functionalized gold nanoparticles based on smartphone.
    Zhang L, Huang D, Zhao P, Yue G, Yang L, Dan W.
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar 15; 269():120748. PubMed ID: 34952439
    [Abstract] [Full Text] [Related]

  • 4. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles.
    Kang J, Zhang Y, Li X, Miao L, Wu A.
    ACS Appl Mater Interfaces; 2016 Jan 13; 8(1):1-5. PubMed ID: 26673452
    [Abstract] [Full Text] [Related]

  • 5. Highly Sensitive Aptamer-Based Colorimetric Detection of Melamine in Raw Milk with Cysteamine-Stabilized Gold Nanoparticles.
    Zheng H, Li Y, Xu J, Bie J, Liu X, Guo J, Luo Y, Shen F, Sun C, Yu Y.
    J Nanosci Nanotechnol; 2017 Feb 13; 17(2):853-61. PubMed ID: 29668219
    [Abstract] [Full Text] [Related]

  • 6. Smartphone-assisted colorimetric detection of Salmonella typhimurium based on the catalytic reduction of 4-nitrophenol by β-cyclodextrin-capped gold nanoparticles.
    Su Z, Wei S, Shi X, Wang X, Zhang L, Bu X, Xu H, Liu Y, Jin M, Pang B, Zhao C.
    Anal Chim Acta; 2023 Jan 25; 1239():340672. PubMed ID: 36628755
    [Abstract] [Full Text] [Related]

  • 7. [Colorimetric assay of perfluorooctanesulfonate based on gold nanoparticles].
    Cong YB, Zheng YH, Zheng L, Wu F, Tan KJ.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan 25; 35(1):189-92. PubMed ID: 25993846
    [Abstract] [Full Text] [Related]

  • 8. A smartphone-based colorimetric assay using Au@Ag core-shell nanoparticles as the nanoprobes for visual tracing of fluvoxamine in biofluids as a common suicide drug.
    Madani-Nejad E, Shokrollahi A, Shahdost-Fard F.
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Aug 05; 296():122665. PubMed ID: 37011439
    [Abstract] [Full Text] [Related]

  • 9. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide.
    Fu X, Chen L, Li J.
    Analyst; 2012 Aug 21; 137(16):3653-8. PubMed ID: 22741162
    [Abstract] [Full Text] [Related]

  • 10. Cysteamine-Modified Gold Nanoparticles as a Colorimetric Sensor for the Rapid Detection of Gentamicin.
    Gukowsky JC, Tan C, Han Z, He L.
    J Food Sci; 2018 Jun 21; 83(6):1631-1638. PubMed ID: 29786853
    [Abstract] [Full Text] [Related]

  • 11. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine.
    Bagci PO, Wang YC, Gunasekaran S.
    J Food Sci; 2015 Sep 21; 80(9):N2071-8. PubMed ID: 26239641
    [Abstract] [Full Text] [Related]

  • 12. Colorimetric detection of melamine in milk based on Triton X-100 modified gold nanoparticles and its paper-based application.
    Gao N, Huang P, Wu F.
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar 05; 192():174-180. PubMed ID: 29136582
    [Abstract] [Full Text] [Related]

  • 13. Smartphone-based colorimetric sensor array using gold nanoparticles for rapid distinguishment of multiple pesticides in real samples.
    Zhao T, Liang X, Guo X, Yang X, Guo J, Zhou X, Huang X, Zhang W, Wang Y, Liu Z, Jiang Z, Zhou H, Zhou H.
    Food Chem; 2023 Mar 15; 404(Pt B):134768. PubMed ID: 36444090
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. In situ colorimetric detection of glyphosate on plant tissues using cysteamine-modified gold nanoparticles.
    Tu Q, Yang T, Qu Y, Gao S, Zhang Z, Zhang Q, Wang Y, Wang J, He L.
    Analyst; 2019 Mar 21; 144(6):2017-2025. PubMed ID: 30702090
    [Abstract] [Full Text] [Related]

  • 20. Paper-Based Colorimetric Detection of miRNA-21 Using Pre-Activated Nylon Membrane and Peroxidase-Mimetic Activity of Cysteamine-Capped Gold Nanoparticles.
    Aamri ME, Mohammadi H, Amine A.
    Biosensors (Basel); 2023 Jan 01; 13(1):. PubMed ID: 36671909
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.