These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
130 related items for PubMed ID: 36647270
1. Melatonin Treatment Enhances the Growth and Productivity of Useful Metabolites in the In Vitro Culture of Spirodela polyrhiza. Ko J, Ryu JE, Noh SW, Choi HK. J Agric Food Chem; 2023 Jan 25; 71(3):1748-1757. PubMed ID: 36647270 [Abstract] [Full Text] [Related]
2. Exogenous melatonin enhances the growth and production of bioactive metabolites in Lemna aequinoctialis culture by modulating metabolic and lipidomic profiles. Baek G, Lee H, Ko J, Choi HK. BMC Plant Biol; 2022 Nov 25; 22(1):545. PubMed ID: 36434529 [Abstract] [Full Text] [Related]
3. The biological responses and metal phytoaccumulation of duckweed Spirodela polyrhiza to manganese and chromium. Liu Y, Sanguanphun T, Yuan W, Cheng JJ, Meetam M. Environ Sci Pollut Res Int; 2017 Aug 25; 24(23):19104-19113. PubMed ID: 28660513 [Abstract] [Full Text] [Related]
4. Growth Promotion of Giant Duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis. Toyama T, Mori K, Tanaka Y, Ike M, Morikawa M. Mol Plant Microbe Interact; 2022 Jan 25; 35(1):28-38. PubMed ID: 34622686 [Abstract] [Full Text] [Related]
5. Cadmium removal by Lemna minor and Spirodela polyrhiza. Chaudhuri D, Majumder A, Misra AK, Bandyopadhyay K. Int J Phytoremediation; 2014 Jan 25; 16(7-12):1119-32. PubMed ID: 24933906 [Abstract] [Full Text] [Related]
6. Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.). Zhang X, Hu Y, Liu Y, Chen B. J Environ Sci (China); 2011 Jan 25; 23(4):601-6. PubMed ID: 21793402 [Abstract] [Full Text] [Related]
7. Effects of coronatine elicitation on growth and metabolic profiles of Lemna paucicostata culture. Kim JY, Kim HY, Jeon JY, Kim DM, Zhou Y, Lee JS, Lee H, Choi HK. PLoS One; 2017 Jan 25; 12(11):e0187622. PubMed ID: 29099862 [Abstract] [Full Text] [Related]
8. Alteration of metabolic profiles in Lemna paucicostata culture and enhanced production of GABA and ferulic acid by ethephon treatment. Kim E, Kim M, Choi HK. PLoS One; 2020 Jan 25; 15(4):e0231652. PubMed ID: 32298342 [Abstract] [Full Text] [Related]
9. Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production. Zhao Y, Fang Y, Jin Y, Huang J, Bao S, Fu T, He Z, Wang F, Wang M, Zhao H. Plant Biol (Stuttg); 2015 Jan 25; 17 Suppl 1():82-90. PubMed ID: 24942851 [Abstract] [Full Text] [Related]
10. Carbon and energy fixation of great duckweed Spirodela polyrhiza growing in swine wastewater. Wang W, Yang C, Tang X, Zhu Q, Pan K, Cai D, Hu Q, Ma D. Environ Sci Pollut Res Int; 2015 Oct 25; 22(20):15804-11. PubMed ID: 26036587 [Abstract] [Full Text] [Related]
11. Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production. Ma YB, Zhu M, Yu CJ, Wang Y, Liu Y, Li ML, Sun YD, Zhao JS, Zhou GK. Plant Biol (Stuttg); 2018 Mar 25; 20(2):357-364. PubMed ID: 29222918 [Abstract] [Full Text] [Related]
12. Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Singh V, Pandey B, Suthar S. Chemosphere; 2018 Jun 25; 201():492-502. PubMed ID: 29529576 [Abstract] [Full Text] [Related]
13. Metabolic flexibility during a trophic transition reveals the phenotypic plasticity of greater duckweed (Spirodela polyrhiza 7498). Sun Z, Zhao X, Li G, Yang J, Chen Y, Xia M, Hwang I, Hou H. New Phytol; 2023 May 25; 238(4):1386-1402. PubMed ID: 36856336 [Abstract] [Full Text] [Related]
14. Genomic analysis of the polyamine biosynthesis pathway in duckweed Spirodela polyrhiza L.: presence of the arginine decarboxylase pathway, absence of the ornithine decarboxylase pathway, and response to abiotic stresses. Upadhyay RK, Shao J, Mattoo AK. Planta; 2021 Oct 25; 254(5):108. PubMed ID: 34694486 [Abstract] [Full Text] [Related]
15. Influence of humic acid on the p-tert-Butylphenol removal efficiency by Spirodela polyrhiza-Tas13 association. Li Y, Huang Z, Zhang H, Zhao J, Du D. Chemosphere; 2024 Aug 25; 362():142744. PubMed ID: 38950749 [Abstract] [Full Text] [Related]
16. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia. Hoang PTN, Schubert I. Chromosoma; 2017 Dec 25; 126(6):729-739. PubMed ID: 28756515 [Abstract] [Full Text] [Related]
17. Duckweed-associated bacteria as plant growth-promotor to enhance growth of Spirodela polyrhiza in wastewater effluent from a poultry farm. Boonmak C, Kettongruang S, Buranathong B, Morikawa M, Duangmal K. Arch Microbiol; 2023 Dec 26; 206(1):43. PubMed ID: 38148332 [Abstract] [Full Text] [Related]
18. Impact of pharmaceutical industry wastewater on stress physiological responses of Spirodela polyrhiza (L.) Schleiden. Parveen K, Kumari R, Malaviya P. Environ Sci Pollut Res Int; 2023 Dec 26; 30(56):119275-119284. PubMed ID: 37924407 [Abstract] [Full Text] [Related]
19. Light intensity drives different growth strategies in two duckweed species: Lemna minor L. and Spirodela polyrhiza (L.) Schleiden. Strzałek M, Kufel L. PeerJ; 2021 Dec 26; 9():e12698. PubMed ID: 35036168 [Abstract] [Full Text] [Related]
20. Comparison of mercury (Hg) bioaccumulation with mono- and mixed Lemna minor and Spirodela polyrhiza cultures. Spencer BS, Baddar ZE, Xu X. Environ Sci Pollut Res Int; 2024 May 26; 31(24):35055-35068. PubMed ID: 38714618 [Abstract] [Full Text] [Related] Page: [Next] [New Search]