These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 36648432

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors.
    Hu N, Rutherford MA, Green SH.
    Proc Natl Acad Sci U S A; 2020 Feb 18; 117(7):3828-3838. PubMed ID: 32015128
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Vesicular Glutamatergic Transmission in Noise-Induced Loss and Repair of Cochlear Ribbon Synapses.
    Kim KX, Payne S, Yang-Hood A, Li SZ, Davis B, Carlquist J, V-Ghaffari B, Gantz JA, Kallogjeri D, Fitzpatrick JAJ, Ohlemiller KK, Hirose K, Rutherford MA.
    J Neurosci; 2019 Jun 05; 39(23):4434-4447. PubMed ID: 30926748
    [Abstract] [Full Text] [Related]

  • 7. The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells.
    Rubio ME, Matsui K, Fukazawa Y, Kamasawa N, Harada H, Itakura M, Molnár E, Abe M, Sakimura K, Shigemoto R.
    Brain Struct Funct; 2017 Nov 05; 222(8):3375-3393. PubMed ID: 28397107
    [Abstract] [Full Text] [Related]

  • 8. Maturation of Heterogeneity in Afferent Synapse Ultrastructure in the Mouse Cochlea.
    Payne SA, Joens MS, Chung H, Skigen N, Frank A, Gattani S, Vaughn K, Schwed A, Nester M, Bhattacharyya A, Iyer G, Davis B, Carlquist J, Patel H, Fitzpatrick JAJ, Rutherford MA.
    Front Synaptic Neurosci; 2021 Nov 05; 13():678575. PubMed ID: 34220482
    [Abstract] [Full Text] [Related]

  • 9. TARPs gamma-2 and gamma-7 are essential for AMPA receptor expression in the cerebellum.
    Yamazaki M, Fukaya M, Hashimoto K, Yamasaki M, Tsujita M, Itakura M, Abe M, Natsume R, Takahashi M, Kano M, Sakimura K, Watanabe M.
    Eur J Neurosci; 2010 Jun 05; 31(12):2204-20. PubMed ID: 20529126
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Presynaptic Diversity Revealed by Ca2+-Permeable AMPA Receptors at the Calyx of Held Synapse.
    Lujan B, Dagostin A, von Gersdorff H.
    J Neurosci; 2019 Apr 17; 39(16):2981-2994. PubMed ID: 30679394
    [Abstract] [Full Text] [Related]

  • 13. Synaptic organization in cochlear inner hair cells deficient for the CaV1.3 (alpha1D) subunit of L-type Ca2+ channels.
    Nemzou N RM, Bulankina AV, Khimich D, Giese A, Moser T.
    Neuroscience; 2006 Sep 15; 141(4):1849-60. PubMed ID: 16828974
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea.
    Barclay M, Constable R, James NR, Thorne PR, Montgomery JM.
    Neuroscience; 2016 Jun 14; 325():50-62. PubMed ID: 27012610
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Elimination of redundant synaptic inputs in the absence of synaptic strengthening.
    Wang H, Liu H, Zhang ZW.
    J Neurosci; 2011 Nov 16; 31(46):16675-84. PubMed ID: 22090494
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.