These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1099 related items for PubMed ID: 36669301

  • 1. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization.
    Dutta SD, Ganguly K, Randhawa A, Patil TV, Patel DK, Lim KT.
    Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301
    [Abstract] [Full Text] [Related]

  • 2. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink.
    Liu Q, Yang J, Wang Y, Wu T, Liang Y, Deng K, Luan G, Chen Y, Huang Z, Yue K.
    Biomacromolecules; 2023 Jun 12; 24(6):2549-2562. PubMed ID: 37115848
    [Abstract] [Full Text] [Related]

  • 3. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss.
    Li T, Hou J, Wang L, Zeng G, Wang Z, Yu L, Yang Q, Yin J, Long M, Chen L, Chen S, Zhang H, Li Y, Wu Y, Huang W.
    Acta Biomater; 2023 Jan 15; 156():21-36. PubMed ID: 36002128
    [Abstract] [Full Text] [Related]

  • 4. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR, Postma A, Frith JE, Meagher L.
    Biofabrication; 2021 Apr 08; 13(3):. PubMed ID: 33662950
    [Abstract] [Full Text] [Related]

  • 5. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications.
    Janmaleki M, Liu J, Kamkar M, Azarmanesh M, Sundararaj U, Nezhad AS.
    Biomed Mater; 2020 Dec 16; 16(1):015021. PubMed ID: 33325382
    [Abstract] [Full Text] [Related]

  • 6. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L, Mehta R, Cao C, Theus A, Tomov M, Zhu N, Weeks ER, Bauser-Heaton H, Serpooshan V.
    ACS Appl Mater Interfaces; 2020 Oct 07; 12(40):44563-44577. PubMed ID: 32966746
    [Abstract] [Full Text] [Related]

  • 7. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.
    Liu W, Zhong Z, Hu N, Zhou Y, Maggio L, Miri AK, Fragasso A, Jin X, Khademhosseini A, Zhang YS.
    Biofabrication; 2018 Jan 12; 10(2):024102. PubMed ID: 29176035
    [Abstract] [Full Text] [Related]

  • 8. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP, Hsu SH.
    Acta Biomater; 2023 Jul 01; 164():124-138. PubMed ID: 37088162
    [Abstract] [Full Text] [Related]

  • 9. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds.
    Yang J, Li Z, Li S, Zhang Q, Zhou X, He C.
    Biomater Sci; 2023 Feb 28; 11(5):1895-1909. PubMed ID: 36722864
    [Abstract] [Full Text] [Related]

  • 10. The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs.
    Raveendran N, Ivanovski S, Vaquette C.
    Acta Biomater; 2023 Jan 15; 156():190-201. PubMed ID: 36155098
    [Abstract] [Full Text] [Related]

  • 11. 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink.
    Wu Y, Wenger A, Golzar H, Tang XS.
    Sci Rep; 2020 Nov 26; 10(1):20648. PubMed ID: 33244046
    [Abstract] [Full Text] [Related]

  • 12. 3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration.
    Wang W, Zhu Y, Liu Y, Chen B, Li M, Yuan C, Wang P.
    Tissue Cell; 2024 Jun 26; 88():102418. PubMed ID: 38776731
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing.
    Anand R, Salar Amoli M, Huysecom AS, Amorim PA, Agten H, Geris L, Bloemen V.
    Biomed Mater; 2022 Jun 24; 17(4):. PubMed ID: 35700719
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.
    Cidonio G, Alcala-Orozco CR, Lim KS, Glinka M, Mutreja I, Kim YH, Dawson JI, Woodfield TBF, Oreffo ROC.
    Biofabrication; 2019 Jun 12; 11(3):035027. PubMed ID: 30991370
    [Abstract] [Full Text] [Related]

  • 18. Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting.
    Hsieh CT, Hsu SH.
    ACS Appl Mater Interfaces; 2019 Sep 11; 11(36):32746-32757. PubMed ID: 31407899
    [Abstract] [Full Text] [Related]

  • 19. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting.
    Bilici Ç, Tatar AG, Şentürk E, Dikyol C, Koç B.
    Biofabrication; 2022 Feb 09; 14(2):. PubMed ID: 35062010
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 55.